机器学习概念概念
机器 学习是计算机科学的一个分支,从模式识别、人工智能和计算学习理论发展而来,我们可以将其作为数据挖掘的工具
侧重用于数据分析方法理解给定的数据
目的是:开发能够从先前观测的数据,通过可调整的参数进行学习的 程序,为了改善预测结果,将参数设计为可自动调整的
常见应用:垃圾邮件过滤器、搜索引擎,光学字符识别(OCR)和计算机视觉
任何一个问题都始于一个数据集,未知数据的特征根据数据集来预测;为了解决问题选用的机器学习算法用数学模型来描述,模型
包含一些参数,需要在训练集上调试。训练完成后,模型的预测性能用另外两个数据集来评估:验证集和训练集
无监督学习
有监督学习
1.2 数据的准备、处理和可视化--NumPy、pandas和maplotlib教程
第2章、无监督学习
第3章、有监督学习
通常指分类和回归
本章讲解,线性回归、朴素贝叶斯、决策树和支持向量机算法
第4章web数据挖掘
搜索引擎,拿到查询词(search query)之后,分析每个网页的数据,找到查询相关的网页。网页中的数据通常分为网页内容和链接到其他网页的超链接
引擎的组成部分:
用自然语言处理技术深入分析其中的内容,比如使用潜在狄利克雷分布分析、意见挖掘或情感分析工具。
这些重要技术适用于从web内容抽取其发表人的主观看法
第5章 推荐系统
是电子商务平台的重要部件,推荐系统的典型应有于Amazon、Netflix、eBay和Google Play商店,这些产品利用收集到的历史数据,向每一位用户推荐他们也许想
购买的商品
第6章 Django
在settings.py文件中安装rest框架
第7章 电影推荐系统的web应用
第8章 影评情感分析系统
所有知识第3、4和第6章学习的算法和库
Django网站