Java之函数式接口@FunctionalInterface详解(附源码)

Java之函数式接口@FunctionalInterface详解

函数式接口的定义

在java8中,满足下面任意一个条件的接口都是函数式接口:

1、被@FunctionalInterface注释的接口,满足@FunctionalInterface注释的约束。

2、没有被@FunctionalInterface注释的接口,但是满足@FunctionalInterface注释的约束

@FunctionalInterface注释的约束:

1、接口有且只能有个一个抽象方法,只有方法定义,没有方法体

2、在接口中覆写Object类中的public方法,不算是函数式接口的方法。

比如:

@FunctionalInterface
interface FunctionalInterfaceTest {
String getInfo(String input);
}

函数式接口的实例

  1. lambda表达式
  2. 方法的引用
  3. 已有构造器或方法的引用
public class Main {

    public static void main(String[] args)
throws ClassNotFoundException,
IllegalAccessException,
InstantiationException,
NoSuchMethodException,
InvocationTargetException, NoSuchFieldException {
/**
* 1、lambda表达式
* 这种形式最为直观,lambda表达式,接收一个String类型的参数,返回一个String类型的结果。
* 完全符合函数式接口FunctionInterfaceTest的定义
*/
FunctionalInterfaceTest fiTest1 = str -> str + " copy";
/**
* 2、Main方法当中的functionalInterfaceTestMethod方法接收一个参数,返回一个结果。符合函数式接口
* FunctionInterfaceTest的定义。
* 函数式接口只是定义了个方法的约定(接收一个String类型的参数,返回一个String类型的结果),
* 而对于方法内部进行何种操作则并没有做任何的限制。在这点上,跟java以前的版本中的实现类与接口之间的
* 关系很类似。不同的是,函数式接口更偏重于计算过程,约束了一个计算过程的输入和输出。
*/
FunctionalInterfaceTest fiTest2 = Main::functionalInterfaceTestMethod;
/**
* 3、构造方法引用
* 构造函数的结构:接收输入参数,然后返回一个对象。这种约束跟函数式接口的约束很像。
* 所以只要“输入参数类型”与“输出参数类型”跟FunctionInterfaceTest中的方法约束相同,
* 就可以创建出FunctionInterfaceTest接口的实例,如下,String的构造方法中有
* new String(str)的构造方法,所以可以得到实例。
* 这里存在一个类型推断的问题,JDK的编译器已经帮我们自动找到了只有一个参数,且是String类型的构造方法。
* 这就是我们直接String::new,没有指定使用哪一个构造方法,却可以创建实例的原因
*/
FunctionalInterfaceTest fiTest3 = String::new; System.out.println(useFunctionalInterface("Hello World!", fiTest1));
System.out.println(useFunctionalInterface("Hello World!", fiTest2));
System.out.println(useFunctionalInterface("Hello World!", fiTest3));
System.out.println(useFunctionalInterface("Hello World!", str -> str + " created by lambda in the context"));
/**
输出:
Hello World! copy
Hello World! copy 2 by reference
Hello World!
Hello World! created by lambda in the context
*/
} public static String functionalInterfaceTestMethod(String str) {
return str + " copy 2 by reference";
} public static String useFunctionalInterface(String str, FunctionalInterfaceTest fiT) {
return fiT.getInfo(str);
}
}

常用的封装好的函数式接口

分别为Function<T, R>, Cosumer<T>, Predicate<T>, Supplier<T>

/**
* 常用的函数式接口主要有四种类型,是通过其输入和输出的参数来进行区分的。定义了编码过程中主要的使用场景。
Function<T,R>
接收一个T类型的参数,返回一个R类型的结果 Consumer<T>
接收一个T类型的参数,不返回值 Predicate<T>
接收一个T类型的参数,返回一个boolean类型的结果 Supplier<T>
不接受参数,返回一个T类型的结果
*/
Function<String, String> add_postfix = str -> str + "postfix";
Consumer<String> print_string = System.out::println;
Predicate<Integer> judge_positive = n -> n > 0;
Supplier<String> supplier = () -> "supply";
List<String> list = Arrays.asList("adfsg", "sdafef", "", "s", "231243", "hgjrepjrg");
list.stream()
.map(str -> str + "1")
.filter(str -> str.length() > 2)
.sorted((str1, str2) -> str2.compareTo(str1))
.forEach(System.out::println);
/**
输出:
sdafef1
hgjrepjrg1
adfsg1
2312431
1234dfgh
*/

此外,对于多参数的情况,Java还封装了BiFunction<T, U, R>, BiConsumer<T, U>, BiPredicate<T, U>。

// 由于java不能返回多个参数,所以没有BiSupplier
BiFunction<String, String, String> combine_string = (str1, str2) -> str1 + str2;
BiConsumer<String, String> print_two_string = (str1, str2) -> System.out.println(str1 + str2);
BiPredicate<String, String> str_equal = String::equals;
int bif_result = biFunctionTestMethod("abs", "pdf", (str1, str2) -> str1.length() + str2.length());
biConsumerTestMethod("1234", "dfgh", (str1, str2) -> System.out.println(str1 + str2));
boolean bip_result_1 = biPredictTestMethod("abc", "abc", str_equal),
bip_result_2 = biPredictTestMethod("abc", "def", str_equal);
System.out.println(bif_result);
System.out.println(bip_result_1);
System.out.println(bip_result_2);
/*
输出:
6
true
false
*/

在此之外,还有compose和andThen方法,其本质就是数学当中的符合函数,唯一的区别:对于函数\(f(x),g(x)\),compose等价于\(f(g(x))\),andThen等价于\(g(f(x))\),就是执行顺序不同而已。

// compose 和 andThen
Function<String, String> compose_function = ((Function<String, String>) (str -> str + "abc")).compose((Function<String, String>) (str -> str + str.length()));
System.out.println("Compose function: " + compose_function.apply("Hello World! "));
Function<String, String> andThen_function = ((Function<String, String>) (str -> str + "abc")).andThen((Function<String, String>) (str -> str + str.length()));
System.out.println("AndThen function: " + andThen_function.apply("Hello World! "));
// Bicosumer, cosumer, bifunction 都有类似功能 // BiPredicate, Predicate 的 and, or, negate
System.out.println(str_equal.negate().test("a", "a")); // false
System.out.println(judge_positive.and(n -> n > 2).test(5)); // true
System.out.println(judge_positive.or(n -> n < -1).test(-10)); // true

源码

Function.java

/**
* Represents a function that accepts one argument and produces a result.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #apply(Object)}.
*
* @param <T> the type of the input to the function
* @param <R> the type of the result of the function
*
* @since 1.8
*/
@FunctionalInterface
public interface Function<T, R> { /**
* Applies this function to the given argument.
*
* @param t the function argument
* @return the function result
*/
R apply(T t); /**
* Returns a composed function that first applies the {@code before}
* function to its input, and then applies this function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of input to the {@code before} function, and to the
* composed function
* @param before the function to apply before this function is applied
* @return a composed function that first applies the {@code before}
* function and then applies this function
* @throws NullPointerException if before is null
*
* @see #andThen(Function)
*/
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
} /**
* Returns a composed function that first applies this function to
* its input, and then applies the {@code after} function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of output of the {@code after} function, and of the
* composed function
* @param after the function to apply after this function is applied
* @return a composed function that first applies this function and then
* applies the {@code after} function
* @throws NullPointerException if after is null
*
* @see #compose(Function)
*/
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
} /**
* Returns a function that always returns its input argument.
*
* @param <T> the type of the input and output objects to the function
* @return a function that always returns its input argument
*/
static <T> Function<T, T> identity() {
return t -> t;
}
}

Consumer.java

/**
* Represents an operation that accepts a single input argument and returns no
* result. Unlike most other functional interfaces, {@code Consumer} is expected
* to operate via side-effects.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #accept(Object)}.
*
* @param <T> the type of the input to the operation
*
* @since 1.8
*/
@FunctionalInterface
public interface Consumer<T> { /**
* Performs this operation on the given argument.
*
* @param t the input argument
*/
void accept(T t); /**
* Returns a composed {@code Consumer} that performs, in sequence, this
* operation followed by the {@code after} operation. If performing either
* operation throws an exception, it is relayed to the caller of the
* composed operation. If performing this operation throws an exception,
* the {@code after} operation will not be performed.
*
* @param after the operation to perform after this operation
* @return a composed {@code Consumer} that performs in sequence this
* operation followed by the {@code after} operation
* @throws NullPointerException if {@code after} is null
*/
default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
}

Predicate.java

/**
* Represents a predicate (boolean-valued function) of one argument.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #test(Object)}.
*
* @param <T> the type of the input to the predicate
*
* @since 1.8
*/
@FunctionalInterface
public interface Predicate<T> { /**
* Evaluates this predicate on the given argument.
*
* @param t the input argument
* @return {@code true} if the input argument matches the predicate,
* otherwise {@code false}
*/
boolean test(T t); /**
* Returns a composed predicate that represents a short-circuiting logical
* AND of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code false}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ANDed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* AND of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) && other.test(t);
} /**
* Returns a predicate that represents the logical negation of this
* predicate.
*
* @return a predicate that represents the logical negation of this
* predicate
*/
default Predicate<T> negate() {
return (t) -> !test(t);
} /**
* Returns a composed predicate that represents a short-circuiting logical
* OR of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code true}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ORed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* OR of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
} /**
* Returns a predicate that tests if two arguments are equal according
* to {@link Objects#equals(Object, Object)}.
*
* @param <T> the type of arguments to the predicate
* @param targetRef the object reference with which to compare for equality,
* which may be {@code null}
* @return a predicate that tests if two arguments are equal according
* to {@link Objects#equals(Object, Object)}
*/
static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
? Objects::isNull
: object -> targetRef.equals(object);
} /**
* Returns a predicate that is the negation of the supplied predicate.
* This is accomplished by returning result of the calling
* {@code target.negate()}.
*
* @param <T> the type of arguments to the specified predicate
* @param target predicate to negate
*
* @return a predicate that negates the results of the supplied
* predicate
*
* @throws NullPointerException if target is null
*
* @since 11
*/
@SuppressWarnings("unchecked")
static <T> Predicate<T> not(Predicate<? super T> target) {
Objects.requireNonNull(target);
return (Predicate<T>)target.negate();
}
}

Supplier.java

/**
* Represents a supplier of results.
*
* <p>There is no requirement that a new or distinct result be returned each
* time the supplier is invoked.
*
* <p>This is a <a href="package-summary.html">functional interface</a>
* whose functional method is {@link #get()}.
*
* @param <T> the type of results supplied by this supplier
*
* @since 1.8
*/
@FunctionalInterface
public interface Supplier<T> { /**
* Gets a result.
*
* @return a result
*/
T get();
}
上一篇:hibernate 基础


下一篇:Linux释放内存脚本