Linux 多线程开发

Linux 多线程开发

文章目录

线程

线程概述

  • 与进程(process)类似,线程(thread)是允许应用程序并发执行多个任务的一种机制。一个进程可以包含多个线程。同一个程序中的所有线程均会独立执行相同程序,且共 享同一份全局内存区域,其中包括初始化数据段、未初始化数据段,以及堆内存段。(传统意义上的 UNIX 进程只是多线程程序的一个特例,该进程只包含一个线程)
  • 进程是 CPU 分配资源的最小单位,线程是操作系统调度执行的最小单位。
  • 线程是轻量级的进程(LWP:Light Weight Process),在 Linux 环境下线程的本 质仍是进程。
  • 查看指定进程的 LWP 号:ps –Lf pid

线程和进程区别

  • 进程间的信息难以共享。由于除去只读代码段外,父子进程并未共享内存,因此必须采用一些进程间通信方式,在进程间进行信息交换。
  • 调用 fork() 来创建进程的代价相对较高,**即便利用写时复制技术,仍然需要复制诸如 内存页表和文件描述符表之类的多种进程属性,**这意味着 fork() 调用在时间上的开销依然不菲。
  • 线程之间能够方便、快速地共享信息。只需将数据复制到共享(全局或堆)变量中即可。
  • 创建线程比创建进程通常要快 10 倍甚至更多。线程间是共享虚拟地址空间的,无需采用写时复制来复制内存,也无需复制页表。

线程之间共享和非共享资源

  • 共享资源 (内核里的数据)

    • 进程 ID 和父进程 ID
    • 进程组 ID 和会话 ID
    • 用户 ID 和 用户组 ID
    • 文件描述符表
    • 信号处置
    • 文件系统的相关信息:文件权限掩码 (umask)、当前工作目录
    • 虚拟地址空间(除栈、.text)
  • 非共享资源

    • 线程 ID
    • 信号掩码
    • 线程特有数据
    • error 变量
    • 实时调度策略和优先级
    • 栈,本地变量和函数的调用链接信息

NPTL

  • 当 Linux 最初开发时,在内核中并不能真正支持线程。但是它的确可以通过 clone() 系统调用将进程作为可调度的实体。这个调用创建了调用进程(calling process)的一个拷贝,这个拷贝与调用进程共享相同的地址空间。LinuxThreads 项目使用这个调用来完成在用户空间模拟对线程的支持。不幸的是,这种方法有一些缺点,尤其是在信号处 理、调度和进程间同步等方面都存在问题。另外,这个线程模型也不符合 POSIX 的要求。
  • 要改进 LinuxThreads,需要内核的支持,并且重写线程库。有两个相互竞争的项目开始 来满足这些要求。一个包括 IBM 的开发人员的团队开展了 NGPT(Next-Generation POSIX Threads)项目。同时,Red Hat 的一些开发人员开展了 NPTL 项目。NGPT 在 2003 年中期被放弃了,把这个领域完全留给了 NPTL。
  • NPTL,或称为 Native POSIX Thread Library,是 Linux 线程的一个新实现,它 克服了 LinuxThreads 的缺点,同时也符合 POSIX 的需求。与 LinuxThreads 相 比,它在性能和稳定性方面都提供了重大的改进
  • 查看当前 pthread 库版本:getconf GNU_LIBPTHREAD_VERSION

线程操作

任何的线程都可以回收其他的线程,通过pthread_join

man pthread

  • int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg);
  • pthread_t pthread_self(void);
  • int pthread_equal(pthread_t t1, pthread_t t2);
  • void pthread_exit(void *retval);
  • int pthread_join(pthread_t thread, void **retval);
  • int pthread_detach(pthread_t thread);
  • int pthread_cancel(pthread_t thread);

pthread_create.c

-pthread -lpthread

/*
    一般情况下,main函数所在的线程我们称之为主线程(main线程),其余创建的线程
    称之为子线程。
    程序中默认只有一个进程,fork()函数调用,2进行
    程序中默认只有一个线程,pthread_create()函数调用,2个线程。

    #include <pthread.h>
    int pthread_create(pthread_t *thread, const pthread_attr_t *attr, 
    void *(*start_routine) (void *), void *arg);

        - 功能:创建一个子线程
        - 参数:
            - thread:传出参数,线程创建成功后,子线程的线程ID被写到该变量中。
            - attr : 设置线程的属性,一般使用默认值,NULL
            - start_routine : 函数指针,这个函数是子线程需要处理的逻辑代码
            - arg : 给第三个参数使用,传参
        - 返回值:
            成功:0
            失败:返回错误号。这个错误号和之前errno不太一样。
            获取错误号的信息:  char * strerror(int errnum);

*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("child thread...\n");
    printf("arg value: %d\n", *(int *)arg);
    return NULL;
}

int main() {

    pthread_t tid;

    int num = 10;

    // 创建一个子线程
    int ret = pthread_create(&tid, NULL, callback, (void *)&num);

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    } 

    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    sleep(1);

    return 0;   // exit(0);
}

pthread_exit.c

/*

    #include <pthread.h>
    void pthread_exit(void *retval);
        功能:终止一个线程,在哪个线程中调用,就表示终止哪个线程
        参数:
            retval:需要传递一个指针,作为一个返回值,可以在pthread_join()中获取到。

    pthread_t pthread_self(void);
        功能:获取当前的线程的线程ID

    int pthread_equal(pthread_t t1, pthread_t t2);
        功能:比较两个线程ID是否相等
        不同的操作系统,pthread_t类型的实现不一样,有的是无符号的长整型,有的
        是使用结构体去实现的。
*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>

void * callback(void * arg) {
    printf("child thread id : %ld\n", pthread_self());
    return NULL;    // pthread_exit(NULL);
} 

int main() {

    // 创建一个子线程
    pthread_t tid;
    int ret = pthread_create(&tid, NULL, callback, NULL);

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    }

    // 主线程
    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    printf("tid : %ld, main thread id : %ld\n", tid ,pthread_self());

    // 让主线程退出,当主线程退出时,不会影响其他正常运行的线程。
    pthread_exit(NULL);

    printf("main thread exit\n");

    return 0;   // exit(0);
}

pthread_join.c 连接已终止的线程

有关pthread_join()第二个参数为二级指针的疑问
即为什么函数的参数要是一个指针类型

/*
    #include <pthread.h>
    int pthread_join(pthread_t thread, void **retval);
        - 功能:和一个已经终止的线程进行连接
                回收子线程的资源
                这个函数是阻塞函数,调用一次只能回收一个子线程
                一般在主线程中使用
        - 参数:
            - thread:需要回收的子线程的ID
            - retval: 接收子线程退出时的返回值
        - 返回值:
            0 : 成功
            非0 : 失败,返回的错误号
*/

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

int value = 10;

void * callback(void * arg) {
    printf("child thread id : %ld\n", pthread_self());
    // sleep(3);
    // return NULL; 
    // int value = 10; // 局部变量
    pthread_exit((void *)&value);   // return (void *)&value;
} 

int main() {

    // 创建一个子线程
    pthread_t tid;
    int ret = pthread_create(&tid, NULL, callback, NULL);

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    }

    // 主线程
    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    printf("tid : %ld, main thread id : %ld\n", tid ,pthread_self());

    // 主线程调用pthread_join()回收子线程的资源
    int * thread_retval;
    ret = pthread_join(tid, (void **)&thread_retval); //传递的是指针的指针,阻塞

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    }

    printf("exit data : %d\n", *thread_retval);

    printf("回收子线程资源成功!\n");

    // 让主线程退出,当主线程退出时,不会影响其他正常运行的线程。
    pthread_exit(NULL);

    return 0; 
}

pthread_detach.c

线程从进程栈分配空间,大小并不是固定的,如果分配空间大于进程栈空间,那么直接运行时出现段错误。

/*
    #include <pthread.h>
    int pthread_detach(pthread_t thread);
        - 功能:分离一个线程。被分离的线程在终止的时候,会自动释放资源返回给系统。
          1.不能多次分离,会产生不可预料的行为。
          2.不能去连接一个已经分离的线程,会报错。
        - 参数:需要分离的线程的ID
        - 返回值:
            成功:0
            失败:返回错误号
*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("chid thread id : %ld\n", pthread_self());
    return NULL;
}

int main() {

    // 创建一个子线程
    pthread_t tid;

    int ret = pthread_create(&tid, NULL, callback, NULL);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error1 : %s\n", errstr);
    }

    // 输出主线程和子线程的id
    printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

    // 设置子线程分离,子线程分离后,子线程结束时对应的资源就不需要主线程释放
    ret = pthread_detach(tid);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error2 : %s\n", errstr);
    }

    // 设置分离后,对分离的子线程进行连接 pthread_join()
    // ret = pthread_join(tid, NULL);
    // if(ret != 0) {
    //     char * errstr = strerror(ret);
    //     printf("error3 : %s\n", errstr);
    // }

    pthread_exit(NULL);

    return 0;
}

pthread_cancle.c

/*
    #include <pthread.h>
    int pthread_cancel(pthread_t thread);
        - 功能:取消线程(让线程终止)
            取消某个线程,可以终止某个线程的运行,
            但是并不是立马终止,而是当子线程执行到一个取消点,线程才会终止。
            取消点:系统规定好的一些系统调用,我们可以粗略的理解为从用户区到内核区的切换,这个位置称之为取消点。
*/

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("chid thread id : %ld\n", pthread_self());
    for(int i = 0; i < 5; i++) {
        printf("child : %d\n", i); //取消点
    }
    return NULL;
}

int main() {
    
    // 创建一个子线程
    pthread_t tid;

    int ret = pthread_create(&tid, NULL, callback, NULL);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error1 : %s\n", errstr);
    }

    // 取消线程
    pthread_cancel(tid);

    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    // 输出主线程和子线程的id
    printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

    
    pthread_exit(NULL);

    return 0;
}

线程属性

  • 线程属性类型 pthread_attr_t
  • int pthread_attr_init(pthread_attr_t *attr);
  • int pthread_attr_destroy(pthread_attr_t *attr);
  • int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);
  • int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

pthread_attr.c

/*
    int pthread_attr_init(pthread_attr_t *attr);
        - 初始化线程属性变量

    int pthread_attr_destroy(pthread_attr_t *attr);
        - 释放线程属性的资源

    int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);
        - 获取线程分离的状态属性

    int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
        - 设置线程分离的状态属性
*/     

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("chid thread id : %ld\n", pthread_self());
    return NULL;
}

int main() {

    // 创建一个线程属性变量
    pthread_attr_t attr;
    // 初始化属性变量
    pthread_attr_init(&attr);

    // 设置属性
    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); //默认线程分离的状态属性

    // 创建一个子线程
    pthread_t tid;

    int ret = pthread_create(&tid, &attr, callback, NULL);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error1 : %s\n", errstr);
    }

    // 获取线程的栈的大小
    size_t size;
    pthread_attr_getstacksize(&attr, &size);
    printf("thread stack size : %ld\n", size);

    // 输出主线程和子线程的id
    printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

    // 释放线程属性资源
    pthread_attr_destroy(&attr);

    pthread_exit(NULL);

    return 0;
}

线程同步

  • 线程的主要优势在于,能够通过全局变量来共享信息。不过,这种便捷的共享是有代价 的:必须确保多个线程不会同时修改同一变量,或者某一线程不会读取正在由其他线程修改的变量。
  • 临界区是指访问某一共享资源的代码片段,并且这段代码的执行应为原子操作,也就是同时访问同一共享资源的其他线程不应中断该片段的执行。
  • 线程同步:即当有一个线程在对内存进行操作时,其他线程都不可以对这个内存地址进 行操作,直到该线程完成操作,其他线程才能对该内存地址进行操作,而其他线程则处 于等待状态。

sell_tickets.c

/*
    使用多线程实现买票的案例。
    有3个窗口,一共是100张票。
*/

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 全局变量,所有的线程都共享这一份资源。
int tickets = 100;

void * sellticket(void * arg) {
    // 卖票
    while(tickets > 0) {
        usleep(6000); // 睡眠6000微秒
        printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);
        tickets--;
    }
    return NULL;
}

int main() {

    // 创建3个子线程
    pthread_t tid1, tid2, tid3;
    pthread_create(&tid1, NULL, sellticket, NULL);
    pthread_create(&tid2, NULL, sellticket, NULL);
    pthread_create(&tid3, NULL, sellticket, NULL);

    // 回收子线程的资源,阻塞
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_join(tid3, NULL);

    // 设置线程分离。
    // pthread_detach(tid1);
    // pthread_detach(tid2);
    // pthread_detach(tid3);

    pthread_exit(NULL); // 退出主线程

    return 0;
}

互斥量

  • **为避免线程更新共享变量时出现问题,可以使用互斥量(mutex 是 mutual exclusion 的缩写)来确保同时仅有一个线程可以访问某项共享资源。**可以使用互斥量来保证对任意共 享资源的原子访问。

  • 互斥量有两种状态:已锁定(locked)和未锁定(unlocked)。任何时候,至多只有一 个线程可以锁定该互斥量。试图对已经锁定的某一互斥量再次加锁,将可能阻塞线程或者报 错失败,具体取决于加锁时使用的方法。

  • 一旦线程锁定互斥量,随即成为该互斥量的所有者,只有所有者才能给互斥量解锁。一般情 况下,对每一共享资源(可能由多个相关变量组成)会使用不同的互斥量,每一线程在访问 同一资源时将采用如下协议:

    • 针对共享资源锁定互斥量
    • 访问共享资源
    • 对互斥量解锁
  • 如果多个线程试图执行这一块代码(一个临界区),事实上只有一个线程能够持有该互斥量(其他线程将遭到阻塞),即同时只有一个线程能够进入这段代码区域,如下图所示:

Linux 多线程开发

互斥量相关操作函数

  • 互斥量的类型 pthread_mutex_t
  • int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);
  • int pthread_mutex_destroy(pthread_mutex_t *mutex);
  • int pthread_mutex_lock(pthread_mutex_t *mutex);
  • int pthread_mutex_trylock(pthread_mutex_t *mutex);
  • int pthread_mutex_unlock(pthread_mutex_t *mutex);

mutex.c

/*
    互斥量的类型 pthread_mutex_t
    int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);
        - 初始化互斥量
        - 参数 :
            - mutex : 需要初始化的互斥量变量
            - attr : 互斥量相关的属性,NULL
        - restrict : C语言的修饰符,被修饰的指针,不能由另外的一个指针进行操作。
            pthread_mutex_t *restrict mutex = xxx;
            pthread_mutex_t *mutex1 = mutex;

    int pthread_mutex_destroy(pthread_mutex_t *mutex);
        - 释放互斥量的资源

    int pthread_mutex_lock(pthread_mutex_t *mutex);
        - 加锁,阻塞的,如果有一个线程加锁了,那么其他的线程只能阻塞等待

    int pthread_mutex_trylock(pthread_mutex_t *mutex);
        - 尝试加锁,如果加锁失败,不会阻塞,会直接返回。

    int pthread_mutex_unlock(pthread_mutex_t *mutex);
        - 解锁
*/
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 全局变量,所有的线程都共享这一份资源。
int tickets = 1000;

// 创建一个互斥量
pthread_mutex_t mutex;

void * sellticket(void * arg) {

    // 卖票
    while(1) {

        // 加锁
        pthread_mutex_lock(&mutex);

        if(tickets > 0) {
            usleep(6000);
            printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);
            tickets--;
        }else {
            // 解锁
            pthread_mutex_unlock(&mutex);
            break;
        }

        // 解锁
        pthread_mutex_unlock(&mutex);
    }

    

    return NULL;
}

int main() {

    // 初始化互斥量
    pthread_mutex_init(&mutex, NULL);

    // 创建3个子线程
    pthread_t tid1, tid2, tid3;
    pthread_create(&tid1, NULL, sellticket, NULL);
    pthread_create(&tid2, NULL, sellticket, NULL);
    pthread_create(&tid3, NULL, sellticket, NULL);

    // 回收子线程的资源,阻塞
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_join(tid3, NULL);

    pthread_exit(NULL); // 退出主线程

    // 释放互斥量资源
    pthread_mutex_destroy(&mutex);

    return 0;
}

死锁

  • 有时,一个线程需要同时访问两个或更多不同的共享资源,而每个资源又都由不同的互 斥量管理。当超过一个线程加锁同一组互斥量时,就有可能发生死锁。
  • 两个或两个以上的进程在执行过程中,因争夺共享资源而造成的一种互相等待的现象, 若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁。
  • 死锁的几种场景:
    • 忘记释放锁
    • 重复加锁
    • 多线程多锁,抢占锁资源

Linux 多线程开发

deadlock.c

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 全局变量,所有的线程都共享这一份资源。
int tickets = 1000;

// 创建一个互斥量
pthread_mutex_t mutex;

void * sellticket(void * arg) {

    // 卖票
    while(1) {

        // 加锁
        pthread_mutex_lock(&mutex);
        pthread_mutex_lock(&mutex); //重复加锁

        if(tickets > 0) {
            usleep(6000);
            printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);
            tickets--;
        }else {
            // 解锁
            pthread_mutex_unlock(&mutex);
            break;
        }

        // 解锁 没释放锁
        // pthread_mutex_unlock(&mutex);
        // pthread_mutex_unlock(&mutex);
    }

    return NULL;
}

int main() {

    // 初始化互斥量
    pthread_mutex_init(&mutex, NULL);

    // 创建3个子线程
    pthread_t tid1, tid2, tid3;
    pthread_create(&tid1, NULL, sellticket, NULL);
    pthread_create(&tid2, NULL, sellticket, NULL);
    pthread_create(&tid3, NULL, sellticket, NULL);

    // 回收子线程的资源,阻塞
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_join(tid3, NULL);

    pthread_exit(NULL); // 退出主线程

    // 释放互斥量资源
    pthread_mutex_destroy(&mutex);

    return 0;
}

deadlock1.c

多线程多锁,抢占锁资源

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 创建2个互斥量
pthread_mutex_t mutex1, mutex2;

void * workA(void * arg) {

    pthread_mutex_lock(&mutex1);
    sleep(1);
    pthread_mutex_lock(&mutex2); //等待workB解锁

    printf("workA....\n");

    pthread_mutex_unlock(&mutex2);
    pthread_mutex_unlock(&mutex1);
    return NULL;
}


void * workB(void * arg) {
    pthread_mutex_lock(&mutex2);
    sleep(1);
    pthread_mutex_lock(&mutex1); //等待workA解锁

    printf("workB....\n");

    pthread_mutex_unlock(&mutex1);
    pthread_mutex_unlock(&mutex2);

    return NULL;
}

int main() {

    // 初始化互斥量
    pthread_mutex_init(&mutex1, NULL);
    pthread_mutex_init(&mutex2, NULL);

    // 创建2个子线程
    pthread_t tid1, tid2;
    pthread_create(&tid1, NULL, workA, NULL);
    pthread_create(&tid2, NULL, workB, NULL);

    // 回收子线程资源
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);

    // 释放互斥量资源
    pthread_mutex_destroy(&mutex1);
    pthread_mutex_destroy(&mutex2);

    return 0;
}

读写锁

  • 当有一个线程已经持有互斥锁时,互斥锁将所有试图进入临界区的线程都阻塞住。但是考虑一种情形,当前持有互斥锁的线程只是要读访问共享资源,而同时有其它几个线程也想读取这个共享资源,但是由于互斥锁的排它性,所有其它线程都无法获取锁,也就无法读访问共享资源了,但是实际上多个线程同时读访问共享资源并不会导致问题。
  • 在对数据的读写操作中,更多的是读操作,写操作较少,例如对数据库数据的读写应用。 为了满足当前能够允许多个读出,但只允许一个写入的需求,线程提供了读写锁来实现。
  • 读写锁的特点:
    • 如果有其它线程读数据,则允许其它线程执行读操作,但不允许写操作。
    • 如果有其它线程写数据,则其它线程都不允许读、写操作。
    • 写是独占的,写的优先级高。

读写锁相关操作函数

  • 读写锁的类型 pthread_rwlock_t
  • int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
  • int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
  • int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
  • int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
  • int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
  • int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
  • int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

rwlock.x

/*
    读写锁的类型 pthread_rwlock_t
    int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
    int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
    int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
    int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

    案例:8个线程操作同一个全局变量。
    3个线程不定时写这个全局变量,5个线程不定时的读这个全局变量
*/

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 创建一个共享数据
int num = 1;
// pthread_mutex_t mutex;
pthread_rwlock_t rwlock;

void * writeNum(void * arg) {

    while(1) {
        pthread_rwlock_wrlock(&rwlock);
        num++;
        printf("++write, tid : %ld, num : %d\n", pthread_self(), num);
        pthread_rwlock_unlock(&rwlock);
        usleep(100);
    }

    return NULL;
}

void * readNum(void * arg) {

    while(1) {
        pthread_rwlock_rdlock(&rwlock);
        printf("===read, tid : %ld, num : %d\n", pthread_self(), num);
        pthread_rwlock_unlock(&rwlock);
        usleep(100);
    }

    return NULL;
}

int main() {

   pthread_rwlock_init(&rwlock, NULL);

    // 创建3个写线程,5个读线程
    pthread_t wtids[3], rtids[5];
    for(int i = 0; i < 3; i++) {
        pthread_create(&wtids[i], NULL, writeNum, NULL);
    }

    for(int i = 0; i < 5; i++) {
        pthread_create(&rtids[i], NULL, readNum, NULL);
    }

    // 设置线程分离
    for(int i = 0; i < 3; i++) {
       pthread_detach(wtids[i]);
    }

    for(int i = 0; i < 5; i++) {
         pthread_detach(rtids[i]);
    }

    pthread_exit(NULL);

    pthread_rwlock_destroy(&rwlock);

    return 0;
}

生产者消费者模型

Linux 多线程开发

prodcust.c

/*
    生产者消费者模型(粗略的版本)
*/
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

// 创建一个互斥量
pthread_mutex_t mutex;

struct Node{
    int num;
    struct Node *next;
};

// 头结点
struct Node * head = NULL;

void * producer(void * arg) {

    // 不断的创建新的节点,添加到链表中
    while(1) {
        pthread_mutex_lock(&mutex);
        struct Node * newNode = (struct Node *)malloc(sizeof(struct Node));
        
        newNode->next = head; //头插法
        head = newNode;
        newNode->num = rand() % 1000;
        
        printf("add node, num : %d, tid : %ld\n", newNode->num, pthread_self());
        pthread_mutex_unlock(&mutex);
        usleep(100);
    }

    return NULL;
}

void * customer(void * arg) {

    while(1) {
        pthread_mutex_lock(&mutex);
        // 保存头结点的指针
        struct Node * tmp = head;

        // 判断是否有数据
        if(head != NULL) {
            // 有数据
            head = head->next;
            printf("del node, num : %d, tid : %ld\n", tmp->num, pthread_self());
            free(tmp);
            
            pthread_mutex_unlock(&mutex);
            usleep(100);
        } else {
            // 没有数据
            pthread_mutex_unlock(&mutex);
        }
    }
    return  NULL;
}

int main() {

    pthread_mutex_init(&mutex, NULL);

    // 创建5个生产者线程,和5个消费者线程
    pthread_t ptids[5], ctids[5];

    for(int i = 0; i < 5; i++) {
        pthread_create(&ptids[i], NULL, producer, NULL);
        pthread_create(&ctids[i], NULL, customer, NULL);
    }

    for(int i = 0; i < 5; i++) {
        pthread_detach(ptids[i]);
        pthread_detach(ctids[i]);
    }

    while(1) {
        sleep(10);
    }

    pthread_mutex_destroy(&mutex);

    pthread_exit(NULL);

    return 0;
}

编译
ulimit -a 查看 core文件是否 打开
ulimit -c unlimited 允许生成core文件
gcc prodcust.c -o prodcust -pthread -g

gdb prodcust
core-file core

条件变量

  • 条件变量的类型 pthread_cond_t
  • int pthread_cond_init(pthread_cond_t *restrict cond, const pthread_condattr_t *restrict attr);
  • int pthread_cond_destroy(pthread_cond_t *cond);
  • int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex);
  • int pthread_cond_timedwait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex, const struct timespec *restrict abstime);
  • int pthread_cond_signal(pthread_cond_t *cond);
  • int pthread_cond_broadcast(pthread_cond_t *cond);

cond.c

/*
    条件变量的类型 pthread_cond_t
    int pthread_cond_init(pthread_cond_t *restrict cond, const pthread_condattr_t *restrict attr);
    int pthread_cond_destroy(pthread_cond_t *cond);
    int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex);
        - 等待,调用了该函数,线程会阻塞。
    int pthread_cond_timedwait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex, const struct timespec *restrict abstime);
        - 等待多长时间,调用了这个函数,线程会阻塞,直到指定的时间结束。
    int pthread_cond_signal(pthread_cond_t *cond);
        - 唤醒一个或者多个等待的线程
    int pthread_cond_broadcast(pthread_cond_t *cond);
        - 唤醒所有的等待的线程
*/
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

// 创建一个互斥量
pthread_mutex_t mutex;
// 创建条件变量
pthread_cond_t cond;

struct Node{
    int num;
    struct Node *next;
};

// 头结点
struct Node * head = NULL;

void * producer(void * arg) {

    // 不断的创建新的节点,添加到链表中
    while(1) {
        pthread_mutex_lock(&mutex);
        struct Node * newNode = (struct Node *)malloc(sizeof(struct Node));
        newNode->next = head;
        head = newNode;
        newNode->num = rand() % 1000;
        printf("add node, num : %d, tid : %ld\n", newNode->num, pthread_self());
        
        // 只要生产了一个,就通知消费者消费
        pthread_cond_signal(&cond);

        pthread_mutex_unlock(&mutex);
        usleep(100);
    }

    return NULL;
}

void * customer(void * arg) {

    while(1) {
        pthread_mutex_lock(&mutex);
        // 保存头结点的指针
        struct Node * tmp = head;
        // 判断是否有数据
        if(head != NULL) {
            // 有数据
            head = head->next;
            printf("del node, num : %d, tid : %ld\n", tmp->num, pthread_self());
            free(tmp);
            pthread_mutex_unlock(&mutex);
            usleep(100);
        } else {
            // 没有数据,需要等待
            // 当这个函数调用阻塞的时候,会对互斥锁进行解锁,当不阻塞的,继续向下执行,会重新加锁。
            pthread_cond_wait(&cond, &mutex);
            pthread_mutex_unlock(&mutex);
        }
    }
    return  NULL;
}

int main() {

    pthread_mutex_init(&mutex, NULL);
    pthread_cond_init(&cond, NULL);

    // 创建5个生产者线程,和5个消费者线程
    pthread_t ptids[5], ctids[5];

    for(int i = 0; i < 5; i++) {
        pthread_create(&ptids[i], NULL, producer, NULL);
        pthread_create(&ctids[i], NULL, customer, NULL);
    }

    for(int i = 0; i < 5; i++) {
        pthread_detach(ptids[i]);
        pthread_detach(ctids[i]);
    }

    while(1) {
        sleep(10);
    }

    pthread_mutex_destroy(&mutex);
    pthread_cond_destroy(&cond);

    pthread_exit(NULL);

    return 0;
}

信号量

  • 信号量的类型 sem_t
  • int sem_init(sem_t *sem, int pshared, unsigned int value);
  • int sem_destroy(sem_t *sem);
  • int sem_wait(sem_t *sem);
  • int sem_trywait(sem_t *sem);
  • int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
  • int sem_post(sem_t *sem);
  • int sem_getvalue(sem_t *sem, int *sval);

semphore.c

/*
    信号量的类型 sem_t
    int sem_init(sem_t *sem, int pshared, unsigned int value);
        - 初始化信号量
        - 参数:
            - sem : 信号量变量的地址
            - pshared : 0 用在线程间 ,非0 用在进程间
            - value : 信号量中的值

    int sem_destroy(sem_t *sem);
        - 释放资源

    int sem_wait(sem_t *sem);
        - 对信号量加锁,调用一次对信号量的值-1,如果值为0,就阻塞

    int sem_trywait(sem_t *sem);

    int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
    int sem_post(sem_t *sem);
        - 对信号量解锁,调用一次对信号量的值+1

    int sem_getvalue(sem_t *sem, int *sval);

    sem_t psem;
    sem_t csem;
    init(psem, 0, 8);
    init(csem, 0, 0);

    producer() {
        sem_wait(&psem);
        sem_post(&csem)
    }

    customer() {
        sem_wait(&csem);
        sem_post(&psem)
    }

*/

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <semaphore.h>

// 创建一个互斥量
pthread_mutex_t mutex;
// 创建两个信号量
sem_t psem;
sem_t csem;

struct Node{
    int num;
    struct Node *next;
};

// 头结点
struct Node * head = NULL;

void * producer(void * arg) {

    // 不断的创建新的节点,添加到链表中
    while(1) {
        sem_wait(&psem);
        pthread_mutex_lock(&mutex);
        struct Node * newNode = (struct Node *)malloc(sizeof(struct Node));
        newNode->next = head;
        head = newNode;
        newNode->num = rand() % 1000;
        printf("add node, num : %d, tid : %ld\n", newNode->num, pthread_self());
        pthread_mutex_unlock(&mutex);
        sem_post(&csem);
    }

    return NULL;
}

void * customer(void * arg) {

    while(1) {
        sem_wait(&csem);
        pthread_mutex_lock(&mutex);
        // 保存头结点的指针
        struct Node * tmp = head;
        head = head->next;
        printf("del node, num : %d, tid : %ld\n", tmp->num, pthread_self());
        free(tmp);
        pthread_mutex_unlock(&mutex);
        sem_post(&psem);
       
    }
    return  NULL;
}

int main() {

    pthread_mutex_init(&mutex, NULL);
    sem_init(&psem, 0, 8);
    sem_init(&csem, 0, 0);

    // 创建5个生产者线程,和5个消费者线程
    pthread_t ptids[5], ctids[5];

    for(int i = 0; i < 5; i++) {
        pthread_create(&ptids[i], NULL, producer, NULL);
        pthread_create(&ctids[i], NULL, customer, NULL);
    }

    for(int i = 0; i < 5; i++) {
        pthread_detach(ptids[i]);
        pthread_detach(ctids[i]);
    }

    while(1) {
        sleep(10);
    }

    pthread_mutex_destroy(&mutex);

    pthread_exit(NULL);

    return 0;
}
上一篇:线程


下一篇:线程的同步-条件变量01