01 - NumPy
NumPy(数值 Python 的简称)是用Python实现的用于科技计算的基础软件包,是一个强大的科学分析和建模工具
- 提供了大量数据结构,能够轻松地执行多维数组和矩阵运算
- 可用作不同类型通用数据的多维容器
- 可以和其他编程语言无缝集成
- 可以简单而快速地与大量数据库和工具结合
官网信息
- HomePage:http://www.numpy.org/
- Manual:https://docs.scipy.org/doc/numpy/
- User Guide:https://docs.scipy.org/doc/numpy/user/
- Reference:https://docs.scipy.org/doc/numpy/reference/generated/
- Function Index:https://docs.scipy.org/doc/numpy/genindex.html
02 - Pandas
针对Python语言的开源数据分析处理工具,可以提供高性能、易用的数据结构;
官网信息
- HomePage:http://pandas.pydata.org/
- Docs: http://pandas.pydata.org/pandas-docs/stable/index.html
- Function Index:http://pandas.pydata.org/pandas-docs/stable/genindex.html
- API:http://pandas.pydata.org/pandas-docs/stable/api.html
- Tutorials:http://pandas.pydata.org/pandas-docs/stable/tutorials.html
- 10 Minutes to pandas:http://pandas.pydata.org/pandas-docs/stable/10min.html
- Cookbook:http://pandas.pydata.org/pandas-docs/stable/cookbook.html
03 - Matplotlib
Python语言的绘图库,功能强大,可绘制出各种专业的图像,支持各种平台,可实现定制
官网信息
HomePage:https://matplotlib.org/
- Docs : https://matplotlib.org/contents.html
- Examples:https://matplotlib.org/gallery/index.html
- Tutorials:https://matplotlib.org/tutorials/index.html
- API:https://matplotlib.org/api/
- User Guide:https://matplotlib.org/contents.html
- Function Indexing:https://matplotlib.org/genindex.html
- Python Module Index:https://matplotlib.org/py-modindex.html
04 - StatsModels
Statsmodels is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration.
- 提供强大的数据统计、测试、探索、分析、建模和可视化功能
- 利用Pandas对象作为基础数据容器进行计算
- 包含一些经典的统计方法,比如贝叶斯方法和一个机器学习的模型
官网信息
- HomePage:http://www.statsmodels.org/
- Documentation:https://www.statsmodels.org/stable/index.html
- Getting started:http://www.statsmodels.org/stable/gettingstarted.html
- Examples:http://www.statsmodels.org/stable/examples/index.html
- Index - Module:http://www.statsmodels.org/stable/py-modindex.html
- Index - Function:http://www.statsmodels.org/stable/genindex.html
其他 - StatsModels
导入statsmodels.api时,出现类似“No module named 'patsy'”的报错
import statsmodels.api as sm
ModuleNotFoundError: No module named 'patsy'
确认当前环境是否已安装patsy模块。
05 - Seaborn
Seaborn is a Python data visualization library based on matplotlib.
It provides a high-level interface for drawing attractive and informative statistical graphics.
官网信息
- HomePage:https://seaborn.pydata.org/
- Introduction:http://seaborn.pydata.org/introduction.html
- Tutorial:http://seaborn.pydata.org/tutorial.html
- Index:http://seaborn.pydata.org/examples/index.html
- API:http://seaborn.pydata.org/api.html
06 - ECharts
Echarts是一个由百度开源的使用 JavaScript 实现的数据可视化库,具备良好的交互性,精巧的图表设计。
官网信息
- 中文官网:http://echarts.baidu.com/
- English HomePage: https://echarts.apache.org/zh/index.html
- GitHub:https://github.com/apache/incubator-echarts
- Tutorial:https://echarts.baidu.com/tutorial.html
- API:https://echarts.baidu.com/api.html
07 - Pyecharts
Pyecharts是一款将python与echarts结合的强大的数据可视化工具
官网信息
- HomePage:http://pyecharts.org/
- Documentation:http://pyecharts.org/#/zh-cn/
08 - OpenRefine
A free, open source, powerful tool for working with messy data.
OpenRefine is a Java-based power tool that allows you to load data, understand it, clean it up, reconcile it, and augment it with data coming from the web. All from a web browser and the comfort and privacy of your own computer.
官网信息
- Home:http://openrefine.org/
- Documentation:http://openrefine.org/documentation.html
- GitHub:https://github.com/OpenRefine/OpenRefine
- Wiki:https://github.com/OpenRefine/OpenRefine/wiki
- Installation:https://github.com/OpenRefine/OpenRefine/wiki/Installation-Instructions
参考信息
- OpenRefine简要:https://www.cnblogs.com/anovana/p/8267435.html
- 《Using OpenRefine》翻译: https://blog.csdn.net/loveyy1010/article/category/6924139
09 - Bokeh
免费开源的交互式图形工具,能读取大型数据集或者流数据,以简单快速的方式为网页提供优美、高交互性能的图形。
官方资料
- Home:https://bokeh.pydata.org/en/latest/
- GitHub:https://bokeh.pydata.org/en/latest/
- User Guide:https://bokeh.pydata.org/en/latest/docs/user_guide.html
- Quickstart:https://bokeh.pydata.org/en/latest/docs/user_guide/quickstart.html
- Tutorial:https://gke.mybinder.org/v2/gh/bokeh/bokeh-notebooks/master
安装参考
官方推荐的安装方式是使用Anaconda Python及其附带的Conda包管理系统(https://www.anaconda.com/distribution/)