系统要求
ClickHouse可以在任何具有x86_64,AArch64或PowerPC64LE CPU架构的Linux,FreeBSD或Mac OS X上运行。
虽然预构建的二进制文件通常是为x86 _64编译并利用SSE 4.2指令集,但除非另有说明,否则使用支持它的CPU将成为额外的系统要求。这是检查当前CPU是否支持SSE 4.2的命令:
$ grep -q sse4_2 /proc/cpuinfo && echo "SSE 4.2 supported" || echo "SSE 4.2 not supported"
首先,您需要添加官方存储库:
sudo yum install yum-utils
sudo rpm --import https://repo.clickhouse.tech/CLICKHOUSE-KEY.GPG
sudo yum-config-manager --add-repo https://repo.clickhouse.tech/rpm/stable/x86_64
如果您想使用最新版本,请将stable替换为testing(建议您在测试环境中使用)。
然后运行这些命令以实际安装包:
sudo yum install clickhouse-server clickhouse-client
启动
可以运行如下命令在后台启动服务:
sudo service clickhouse-server start
可以在/var/log/clickhouse-server/目录中查看日志。
如果服务没有启动,请检查配置文件 /etc/clickhouse-server/config.xml。
你可以使用命令行客户端连接到服务:
clickhouse-client
默认情况下它使用’default’用户无密码的与localhost:9000服务建立连接。
客户端也可以用于连接远程服务,例如:
clickhouse-client --host=example.com
检查系统是否工作:
milovidov@hostname:~/work/metrica/src/src/Client$ ./clickhouse-client
ClickHouse client version 0.0.18749.
Connecting to localhost:9000.
Connected to ClickHouse server version 0.0.18749.
:) SELECT 1
SELECT 1
┌─1─┐
│ 1 │
└───┘
1 rows in set. Elapsed: 0.003 sec.
:)
测试数据下载导入
导入示例数据集
现在是时候用一些示例数据填充我们的ClickHouse服务器。 在本教程中,我们将使用Yandex的匿名数据。Metrica,在成为开源之前以生产方式运行ClickHouse的第一个服务(更多关于这一点 历史科). 有 多种导入Yandex的方式。梅里卡数据集,为了本教程,我们将使用最现实的一个。
下载并提取表数据
curl https://clickhouse-datasets.s3.yandex.net/hits/tsv/hits_v1.tsv.xz | unxz --threads=`nproc` > hits_v1.tsv
curl https://clickhouse-datasets.s3.yandex.net/visits/tsv/visits_v1.tsv.xz | unxz --threads=`nproc` > visits_v1.tsv
提取的文件大小约为10GB。
如果国外下载慢 可以使用网盘下载数据文件
链接: https://pan.baidu.com/s/1LFzoWq-IdVONJra1lHN-PA 提取码: 4zez
创建表
与大多数数据库管理系统一样,ClickHouse在逻辑上将表分组为 “databases”. 有一个 default 数据库,但我们将创建一个名为新的 tutorial:
clickhouse-client --query "CREATE DATABASE IF NOT EXISTS tutorial"
与数据库相比,创建表的语法要复杂得多(请参阅 参考资料. 一般 CREATE TABLE 声明必须指定三个关键的事情:
要创建的表的名称。
Table schema, i.e. list of columns and their 数据类型.
表引擎 及其设置,这决定了如何物理执行对此表的查询的所有细节。
YandexMetrica是一个网络分析服务,样本数据集不包括其全部功能,因此只有两个表可以创建:
hits 是一个表格,其中包含所有用户在服务所涵盖的所有网站上完成的每个操作。
visits 是一个包含预先构建的会话而不是单个操作的表。
让我们看看并执行这些表的实际创建表查询:
clickhouse-client -m#打开客户端运行多行sql
CREATE TABLE tutorial.hits_v1
(
`WatchID` UInt64,
`JavaEnable` UInt8,
`Title` String,
`GoodEvent` Int16,
`EventTime` DateTime,
`EventDate` Date,
`CounterID` UInt32,
`ClientIP` UInt32,
`ClientIP6` FixedString(16),
`RegionID` UInt32,
`UserID` UInt64,
`CounterClass` Int8,
`OS` UInt8,
`UserAgent` UInt8,
`URL` String,
`Referer` String,
`URLDomain` String,
`RefererDomain` String,
`Refresh` UInt8,
`IsRobot` UInt8,
`RefererCategories` Array(UInt16),
`URLCategories` Array(UInt16),
`URLRegions` Array(UInt32),
`RefererRegions` Array(UInt32),
`ResolutionWidth` UInt16,
`ResolutionHeight` UInt16,
`ResolutionDepth` UInt8,
`FlashMajor` UInt8,
`FlashMinor` UInt8,
`FlashMinor2` String,
`NetMajor` UInt8,
`NetMinor` UInt8,
`UserAgentMajor` UInt16,
`UserAgentMinor` FixedString(2),
`CookieEnable` UInt8,
`JavascriptEnable` UInt8,
`IsMobile` UInt8,
`MobilePhone` UInt8,
`MobilePhoneModel` String,
`Params` String,
`IPNetworkID` UInt32,
`TraficSourceID` Int8,
`SearchEngineID` UInt16,
`SearchPhrase` String,
`AdvEngineID` UInt8,
`IsArtifical` UInt8,
`WindowClientWidth` UInt16,
`WindowClientHeight` UInt16,
`ClientTimeZone` Int16,
`ClientEventTime` DateTime,
`SilverlightVersion1` UInt8,
`SilverlightVersion2` UInt8,
`SilverlightVersion3` UInt32,
`SilverlightVersion4` UInt16,
`PageCharset` String,
`CodeVersion` UInt32,
`IsLink` UInt8,
`IsDownload` UInt8,
`IsNotBounce` UInt8,
`FUniqID` UInt64,
`HID` UInt32,
`IsOldCounter` UInt8,
`IsEvent` UInt8,
`IsParameter` UInt8,
`DontCountHits` UInt8,
`WithHash` UInt8,
`HitColor` FixedString(1),
`UTCEventTime` DateTime,
`Age` UInt8,
`Sex` UInt8,
`Income` UInt8,
`Interests` UInt16,
`Robotness` UInt8,
`GeneralInterests` Array(UInt16),
`RemoteIP` UInt32,
`RemoteIP6` FixedString(16),
`WindowName` Int32,
`OpenerName` Int32,
`HistoryLength` Int16,
`BrowserLanguage` FixedString(2),
`BrowserCountry` FixedString(2),
`SocialNetwork` String,
`SocialAction` String,
`HTTPError` UInt16,
`SendTiming` Int32,
`DNSTiming` Int32,
`ConnectTiming` Int32,
`ResponseStartTiming` Int32,
`ResponseEndTiming` Int32,
`FetchTiming` Int32,
`RedirectTiming` Int32,
`DOMInteractiveTiming` Int32,
`DOMContentLoadedTiming` Int32,
`DOMCompleteTiming` Int32,
`LoadEventStartTiming` Int32,
`LoadEventEndTiming` Int32,
`NSToDOMContentLoadedTiming` Int32,
`FirstPaintTiming` Int32,
`RedirectCount` Int8,
`SocialSourceNetworkID` UInt8,
`SocialSourcePage` String,
`ParamPrice` Int64,
`ParamOrderID` String,
`ParamCurrency` FixedString(3),
`ParamCurrencyID` UInt16,
`GoalsReached` Array(UInt32),
`OpenstatServiceName` String,
`OpenstatCampaignID` String,
`OpenstatAdID` String,
`OpenstatSourceID` String,
`UTMSource` String,
`UTMMedium` String,
`UTMCampaign` String,
`UTMContent` String,
`UTMTerm` String,
`FromTag` String,
`HasGCLID` UInt8,
`RefererHash` UInt64,
`URLHash` UInt64,
`CLID` UInt32,
`YCLID` UInt64,
`ShareService` String,
`ShareURL` String,
`ShareTitle` String,
`ParsedParams` Nested(
Key1 String,
Key2 String,
Key3 String,
Key4 String,
Key5 String,
ValueDouble Float64),
`IslandID` FixedString(16),
`RequestNum` UInt32,
`RequestTry` UInt8
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192
CREATE TABLE tutorial.visits_v1
(
`CounterID` UInt32,
`StartDate` Date,
`Sign` Int8,
`IsNew` UInt8,
`VisitID` UInt64,
`UserID` UInt64,
`StartTime` DateTime,
`Duration` UInt32,
`UTCStartTime` DateTime,
`PageViews` Int32,
`Hits` Int32,
`IsBounce` UInt8,
`Referer` String,
`StartURL` String,
`RefererDomain` String,
`StartURLDomain` String,
`EndURL` String,
`LinkURL` String,
`IsDownload` UInt8,
`TraficSourceID` Int8,
`SearchEngineID` UInt16,
`SearchPhrase` String,
`AdvEngineID` UInt8,
`PlaceID` Int32,
`RefererCategories` Array(UInt16),
`URLCategories` Array(UInt16),
`URLRegions` Array(UInt32),
`RefererRegions` Array(UInt32),
`IsYandex` UInt8,
`GoalReachesDepth` Int32,
`GoalReachesURL` Int32,
`GoalReachesAny` Int32,
`SocialSourceNetworkID` UInt8,
`SocialSourcePage` String,
`MobilePhoneModel` String,
`ClientEventTime` DateTime,
`RegionID` UInt32,
`ClientIP` UInt32,
`ClientIP6` FixedString(16),
`RemoteIP` UInt32,
`RemoteIP6` FixedString(16),
`IPNetworkID` UInt32,
`SilverlightVersion3` UInt32,
`CodeVersion` UInt32,
`ResolutionWidth` UInt16,
`ResolutionHeight` UInt16,
`UserAgentMajor` UInt16,
`UserAgentMinor` UInt16,
`WindowClientWidth` UInt16,
`WindowClientHeight` UInt16,
`SilverlightVersion2` UInt8,
`SilverlightVersion4` UInt16,
`FlashVersion3` UInt16,
`FlashVersion4` UInt16,
`ClientTimeZone` Int16,
`OS` UInt8,
`UserAgent` UInt8,
`ResolutionDepth` UInt8,
`FlashMajor` UInt8,
`FlashMinor` UInt8,
`NetMajor` UInt8,
`NetMinor` UInt8,
`MobilePhone` UInt8,
`SilverlightVersion1` UInt8,
`Age` UInt8,
`Sex` UInt8,
`Income` UInt8,
`JavaEnable` UInt8,
`CookieEnable` UInt8,
`JavascriptEnable` UInt8,
`IsMobile` UInt8,
`BrowserLanguage` UInt16,
`BrowserCountry` UInt16,
`Interests` UInt16,
`Robotness` UInt8,
`GeneralInterests` Array(UInt16),
`Params` Array(String),
`Goals` Nested(
ID UInt32,
Serial UInt32,
EventTime DateTime,
Price Int64,
OrderID String,
CurrencyID UInt32),
`WatchIDs` Array(UInt64),
`ParamSumPrice` Int64,
`ParamCurrency` FixedString(3),
`ParamCurrencyID` UInt16,
`ClickLogID` UInt64,
`ClickEventID` Int32,
`ClickGoodEvent` Int32,
`ClickEventTime` DateTime,
`ClickPriorityID` Int32,
`ClickPhraseID` Int32,
`ClickPageID` Int32,
`ClickPlaceID` Int32,
`ClickTypeID` Int32,
`ClickResourceID` Int32,
`ClickCost` UInt32,
`ClickClientIP` UInt32,
`ClickDomainID` UInt32,
`ClickURL` String,
`ClickAttempt` UInt8,
`ClickOrderID` UInt32,
`ClickBannerID` UInt32,
`ClickMarketCategoryID` UInt32,
`ClickMarketPP` UInt32,
`ClickMarketCategoryName` String,
`ClickMarketPPName` String,
`ClickAWAPSCampaignName` String,
`ClickPageName` String,
`ClickTargetType` UInt16,
`ClickTargetPhraseID` UInt64,
`ClickContextType` UInt8,
`ClickSelectType` Int8,
`ClickOptions` String,
`ClickGroupBannerID` Int32,
`OpenstatServiceName` String,
`OpenstatCampaignID` String,
`OpenstatAdID` String,
`OpenstatSourceID` String,
`UTMSource` String,
`UTMMedium` String,
`UTMCampaign` String,
`UTMContent` String,
`UTMTerm` String,
`FromTag` String,
`HasGCLID` UInt8,
`FirstVisit` DateTime,
`PredLastVisit` Date,
`LastVisit` Date,
`TotalVisits` UInt32,
`TraficSource` Nested(
ID Int8,
SearchEngineID UInt16,
AdvEngineID UInt8,
PlaceID UInt16,
SocialSourceNetworkID UInt8,
Domain String,
SearchPhrase String,
SocialSourcePage String),
`Attendance` FixedString(16),
`CLID` UInt32,
`YCLID` UInt64,
`NormalizedRefererHash` UInt64,
`SearchPhraseHash` UInt64,
`RefererDomainHash` UInt64,
`NormalizedStartURLHash` UInt64,
`StartURLDomainHash` UInt64,
`NormalizedEndURLHash` UInt64,
`TopLevelDomain` UInt64,
`URLScheme` UInt64,
`OpenstatServiceNameHash` UInt64,
`OpenstatCampaignIDHash` UInt64,
`OpenstatAdIDHash` UInt64,
`OpenstatSourceIDHash` UInt64,
`UTMSourceHash` UInt64,
`UTMMediumHash` UInt64,
`UTMCampaignHash` UInt64,
`UTMContentHash` UInt64,
`UTMTermHash` UInt64,
`FromHash` UInt64,
`WebVisorEnabled` UInt8,
`WebVisorActivity` UInt32,
`ParsedParams` Nested(
Key1 String,
Key2 String,
Key3 String,
Key4 String,
Key5 String,
ValueDouble Float64),
`Market` Nested(
Type UInt8,
GoalID UInt32,
OrderID String,
OrderPrice Int64,
PP UInt32,
DirectPlaceID UInt32,
DirectOrderID UInt32,
DirectBannerID UInt32,
GoodID String,
GoodName String,
GoodQuantity Int32,
GoodPrice Int64),
`IslandID` FixedString(16)
)
ENGINE = CollapsingMergeTree(Sign)
PARTITION BY toYYYYMM(StartDate)
ORDER BY (CounterID, StartDate, intHash32(UserID), VisitID)
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192
您可以使用以下交互模式执行这些查询 clickhouse-client (只需在终端中启动它,而不需要提前指定查询)或尝试一些 替代接口 如果你愿意的话
正如我们所看到的, hits_v1 使用 基本MergeTree引擎,而 visits_v1 使用 崩溃 变体。
导入数据
数据导入到ClickHouse是通过以下方式完成的 INSERT INTO 查询像许多其他SQL数据库。 然而,数据通常是在一个提供 支持的序列化格式 而不是 VALUES 子句(也支持)。
我们之前下载的文件是以制表符分隔的格式,所以这里是如何通过控制台客户端导入它们:
clickhouse-client --query "INSERT INTO tutorial.hits_v1 FORMAT TSV" --max_insert_block_size=100000 < hits_v1.tsv
clickhouse-client --query "INSERT INTO tutorial.visits_v1 FORMAT TSV" --max_insert_block_size=100000 < visits_v1.tsv
ClickHouse有很多 要调整的设置 在控制台客户端中指定它们的一种方法是通过参数,我们可以看到 --max_insert_block_size. 找出可用的设置,它们意味着什么以及默认值的最简单方法是查询 system.settings 表:
SELECT name, value, changed, description
FROM system.settings
WHERE name LIKE '%max_insert_b%'
FORMAT TSV
max_insert_block_size 1048576 0 "The maximum block size for insertion, if we control the creation of blocks for insertion."
您也可以 OPTIMIZE 导入后的表。 使用MergeTree-family引擎配置的表总是在后台合并数据部分以优化数据存储(或至少检查是否有意义)。 这些查询强制表引擎立即进行存储优化,而不是稍后进行一段时间:
clickhouse-client --query "OPTIMIZE TABLE tutorial.hits_v1 FINAL"
clickhouse-client --query "OPTIMIZE TABLE tutorial.visits_v1 FINAL"
这些查询开始一个I/O和CPU密集型操作,所以如果表一直接收到新数据,最好不要管它,让合并在后台运行。
现在我们可以检查表导入是否成功:
clickhouse-client --query "SELECT COUNT(*) FROM tutorial.hits_v1"
clickhouse-client --query "SELECT COUNT(*) FROM tutorial.visits_v1"
查询示例
SELECT
StartURL AS URL,
AVG(Duration) AS AvgDuration
FROM tutorial.visits_v1
WHERE StartDate BETWEEN '2014-03-23' AND '2014-03-30'
GROUP BY URL
ORDER BY AvgDuration DESC
LIMIT 10
SELECT
sum(Sign) AS visits,
sumIf(Sign, has(Goals.ID, 1105530)) AS goal_visits,
(100. * goal_visits) / visits AS goal_percent
FROM tutorial.visits_v1
WHERE (CounterID = 912887) AND (toYYYYMM(StartDate) = 201403) AND (domain(StartURL) = 'yandex.ru')