Unsupervised Domain Adaptation by Backpropagation

目录

Ganin Y. and Lempitsky V. Unsupervised Domain Adaptation by Backpropagation. ICML 2015.

监督学习非常依赖标签数据, 但是获得大量的标签数据在现实中是代价昂贵的一件事情, 这也是为何半监督和无监督重要的原因.
本文提出一种利用GRL来进行domain adaptation的方法, 感觉本文的创新点还是更加偏重于结构一点.

主要内容

Unsupervised Domain Adaptation by Backpropagation

接下来的叙述的方式可能和原文的有一点点的出入.

首先整个网络的框架包括一个用于提取特征的\(G_f\), 可见其是共享的, 提取的到的特征会分别进入上下两个\(G_c, G_d\).
其中, \(G_c\) 是普通的分类器, 当然这要求最开始的输入我们是有对应的标签的, \(G_f + G_c\)也就是我们最后所需要的整个网络.
而\(G_d\)的最后是一个二分类器, 用于区别输入的样本是来自有标签的数据集还是目标数据集.

我们来看一下损失

\[\sum_{i=1\cdots N, d_i=0} \mathcal{L}_y^i (\theta_f, \theta_c) + \lambda \cdot \sum_{i=1\cdots N} \mathcal{L}_{d}^i (\theta_f, \theta_d) \]

首先关于\(G_f, G_c\)最小化\(\mathcal{L}_y\), 关于\(G_d\)则是最小化\(\mathcal{L}_d\), 同时关于\(G_f\)最大化\(\mathcal{L}_d\).

直观上讲就是, 我们要求\(G_f\)提取的特征使得分类器能够区分出输入的类别, 而下半部分则是一种对抗的思想, \(G_f\)提取的特征希望\(G_d\)不能够区别出输入来自有标签的域还是目标域, 对应的\(G_d\)是努力去区别开来.

为了实现这一点, 本文利用了一种GRL的技术, 即梯度从\(G_d\)回传到\(G_f\)的时候会变换梯度的方向.

代码

import torch
from torch.autograd import Function

class RevGrad(Function):

    @staticmethod
    def forward(ctx, inputs):
        return inputs

    @staticmethod
    def backward(ctx, grad_outputs):
        return grad_outputs.neg()

上一篇:域适应(domain adaptation)


下一篇:论文阅读笔记(七十六)【TIP2021】:Cross-Modal Knowledge Adaptation for Language-Based Person Search