想实现断电保存少量的一些数据,stm32内部flash 排除运行程序占用空间后,还有剩余空间,可以把这些空间利用起来。
在操作前,推荐先看一下flash 存储 页、扇区、块概念和flash 每页地址,推荐: https://blog.csdn.net/ybhuangfugui/article/details/121463317
如果只是单纯想存、取数据,那就只关注页、每页大小、每页开始地址就可以了。
stm32f103c6t6 共 32 页, 每页 1kb(1024字节),也就是说,有32kb的断电保存空间,减去运行程序占用空间,剩下的,都是可操作空间。
涉及到基本感念:
8bit = 1b(byte 字节), 1024kb = 1Mb
uint8_t类型 占用 8bit(1b)
uint16_t类型 占用 16bit(2b)
uint32_t类型 占用 32bit(4b)
uint64_t类型 占用 64bit(8b)
第一页开始地址: 0x8000000 结束地址: 0x80003FF
此处可以打开计算器试着计算一下:
获取运行程序实际大小:
在keil5中,执行rebuild, 完成后在结果中找到:
把这几个值加起来,除1024(值的单位是b(byte)): 4244 + 292 + 16 + 1128 = 5680 ; 5680 / 1024 = 5.54kb,相当于程序占用了5页半,就当六页算。
在操作flash存储数据时,为防止影响到程序代码,可以隔一页,写数据。从第七页开始存储,(不一定必须隔一页,只是个人习惯)
0x8000000 + (1024 * 6) = 0x8001800
此处乘 6不是 乘7,是因为页是从0开始的,0页地址是0x8000000,1页就是 0x8000000 + (1024) ,2页就是 0x8000000 + (1024 * 2).....
比如存储一个uint16_t类型数据,因为uint16_t占2字节,所以,0x8001800 + 2 = 0x8001802,这个变量内容就存储在:0x8001801和0x8001802两个地址中。
以下是我写的测试代码方法,测试存取数据操作:
#define PAGE_START_ADDRESS 0x8000000
//paramSizeKb 程序大小 //data 准备写入数据 //len 大小 bool flashWriteData(int paramSizeKb, uint64_t data[], size_t len) { HAL_FLASH_Unlock();//解锁flash //准备擦除整页,写入前需要擦除 FLASH_EraseInitTypeDef f; f.TypeErase = FLASH_TYPEERASE_PAGES;//页擦除 f.PageAddress = PAGE_START_ADDRESS + (1024 * paramSizeKb);//擦除页地址 f.NbPages = 1;//擦除1页 uint32_t PageError = 0; HAL_FLASHEx_Erase(&f, &PageError);//擦除PageError == 0xFFFFFFFF表示成功 if(PageError != 0xFFFFFFFF) { return false; } //开始写数据 uint32_t startAddressIndex = PAGE_START_ADDRESS + (1024 * paramSizeKb); //startAddressIndex += 8,写入位置,每次+8是因为存储的类型是uint64_t,占用64bit,8字节 for(int i = 0 ; i < len;i ++ , startAddressIndex += 8) { //写入数据 HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, startAddressIndex, data[i]); } //重新上锁 HAL_FLASH_Lock(); return true; } //读取数据 //paramSizeKb 程序大小 //data 读入数据 //len 读入数据长度 void flashReadData(int paramSizeKb, uint8_t *data, size_t len) { uint32_t startAddressIndex = PAGE_START_ADDRESS + (1024 * paramSizeKb); for(int i = 0; i < len; i++, startAddressIndex += 8){ data[i] = *(__IO uint32_t*)(startAddressIndex); } }
在烧写程序测试前,可以先用keil5 仿真功能测试一下,在测试时需要注意打开指定地址的读写访问操作:
打开运行指定地址读写访问:
首先开启debug调试: Debug -> Start/Stop Debug Session
进入debug调试后,进入Debug -> Memory Map... : Map Range处输入允许读写 开始地址,结束地址,逗号分割; 勾选Read Write复选框,点击Map Range 按钮添加允许读写操作区域。
然后,就可以点击(Run F5)继续调试程序了。
完整测试文件内容main.c:
/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * <h2><center>© Copyright (c) 2021 STMicroelectronics. * All rights reserved.</center></h2> * * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "usart.h" #include "gpio.h" #include "stdbool.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ //#define PAGE_START_ADDRESS 0x8000000 #define PAGE_START_ADDRESS 0x8008800 //paramSizeKb 程序大小 //data 准备写入数据 //len 大小 bool flashWriteData(int paramSizeKb, uint64_t data[], size_t len) { HAL_FLASH_Unlock();//解锁flash //准备擦除整页,写入前需要擦除 FLASH_EraseInitTypeDef f; f.TypeErase = FLASH_TYPEERASE_PAGES;//页擦除 f.PageAddress = PAGE_START_ADDRESS + (1024 * paramSizeKb);//擦除页地址 f.NbPages = 1;//擦除1页 uint32_t PageError = 0; HAL_FLASHEx_Erase(&f, &PageError);//擦除PageError == 0xFFFFFFFF表示成功 if(PageError != 0xFFFFFFFF) { return false; } //开始写数据 uint32_t startAddressIndex = PAGE_START_ADDRESS + (1024 * paramSizeKb); //startAddressIndex += 8,写入位置,每次+8是因为存储的类型是uint64_t,占用64bit,8字节 for(int i = 0 ; i < len;i ++ , startAddressIndex += 8) { //写入数据 HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, startAddressIndex, data[i]); } //重新上锁 HAL_FLASH_Lock(); return true; } //读取数据 //paramSizeKb 程序大小 //data 读入数据 //len 读入数据长度 void flashReadData(int paramSizeKb, uint64_t *data, size_t len) { uint32_t startAddressIndex = PAGE_START_ADDRESS + (1024 * paramSizeKb); for(int i = 0; i < len; i++, startAddressIndex += 8){ data[i] = *(__IO uint32_t*)(startAddressIndex); } } /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ //程序大小 6k, rebuild 后 看Program Size: Code=4124 RO-data=292 RW-data=16 ZI-data=1128 ,把这几个数字(byte)加起来 / 1024 //每页1k while (1) { //HAL_UART_Transmit(&huart1, (uint8_t[]){0x00, 0x00, 0x00}, 3, 1000); /* USER CODE END WHILE */ uint8_t data[3]; if (HAL_UART_Receive(&huart1, data, 3, 100) == HAL_OK) { //0xAA or 0xBB uint8_t cmd = 0xFF; for(int i = 0; i < 3; i++) { if(data[i] != data[0]) { HAL_UART_Transmit(&huart1, data, 3, 1000); break; } if (i + 1 == 3) { cmd = data[0]; } } if(cmd == 0xAA) { uint64_t writeData[5] = {0xAA, 0xBB, 0xCC, 0xDD, 0xEE}; if(flashWriteData(6, writeData, 5)) { HAL_UART_Transmit(&huart1, (uint8_t[]){0xAA, 0xAA, 0xAA}, 3, 1000); }else{ HAL_UART_Transmit(&huart1, (uint8_t[]){0xFF, 0xFF, 0xFF}, 3, 1000); } } if(cmd == 0xBB) { uint64_t readData[5]; flashReadData(6, readData, 5); //HAL_UART_Transmit(&huart1, (uint8_t[]){0xBB, 0xBB, 0xBB}, 3, 1000); HAL_UART_Transmit(&huart1, (uint8_t[]){0xFF, 0xFF, 0xFF}, 5, 1000); } if(cmd != 0xAA && cmd != 0xBB) { HAL_UART_Transmit(&huart1, (uint8_t[]){0xFF, 0xFF, 0xFF}, 3, 1000); } } /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
此处代码通过串口发送0xAA 0xAA 0xAA,设置0xAA, 0xBB, 0xCC, 0xDD, 0xEE;发送0xBB 0xBB 0xBB 读取存入的内容。
刚开始接触STM32相关硬件,如果有误导的地方,恳请一定指出! 防止误让其他人走弯路。