基于visual Studio2013解决C语言竞赛题之0601判断素数函数









基于visual Studio2013解决C语言竞赛题之0601判断素数函数

题目

基于visual Studio2013解决C语言竞赛题之0601判断素数函数

解决代码及点评


//编写一函数判断一个数是否为素数
#include<stdio.h>
#include <stdlib.h>
#include <math.h>
void f61(int a )
{
 if (a==0)
 {
  printf("%d不是素数!",a);
 }
 else if (a==1)
 {
  printf("%d不是素数!",a);
 }
 else
 {
  int flag=1;
  for (int i=2;i<=sqrt((double)a);i++)
  {
   
   if (a%i==0)
   {
    flag=0;
    break;
   }
  }
  if (flag==1)
  {
   printf("%d是素数!",a);
  }
  else
   printf("%d不是素数!",a);
 }
}
void main()
{
 int a;
 scanf_s("%d",&a);
 f61(a);
 system("pause");
}

代码编译以及运行

由于资源上传太多,资源频道经常被锁定无法上传资源,同学们可以打开VS2013自己创建工程,步骤如下:

1)新建工程

基于visual Studio2013解决C语言竞赛题之0601判断素数函数

2)选择工程

基于visual Studio2013解决C语言竞赛题之0601判断素数函数

3)创建完工程如下图:

基于visual Studio2013解决C语言竞赛题之0601判断素数函数

4)增加文件,右键点击项目

基于visual Studio2013解决C语言竞赛题之0601判断素数函数

5)在弹出菜单里做以下选择

基于visual Studio2013解决C语言竞赛题之0601判断素数函数

6)添加文件

基于visual Studio2013解决C语言竞赛题之0601判断素数函数

7)拷贝代码与运行

基于visual Studio2013解决C语言竞赛题之0601判断素数函数

程序运行结果

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACUDSURBVHhe7d0JvF1VfS/w/80kMyRKJuiztg5QpkAgMsggAYIaQOuIEzh8fPV1oIhFxWp9HyqKVYTqK22faIpa9b0+fa0KKlNQwaYiIIOl9vFaXksICaNMSUhy31777H2z78k+5557M6xUvt/45+y99lprr71PPjk/z7nD0HAhGk499dRqCwAAto4vfvGvqq2OkVCawujQ0FC89PiFcfRxi2LmzFllBwAA2FLWrH487rz95vj8ZZdFiqF1OC1DaQqk06fPiN8+69x4MqaVBwAAYGuZs9u0uOD8D8fDDz9UBtMylJ522mnxwT/6WDw59KyqGwAAbF1zdp0a557zu3H55Uti6JRTThk+4oij48iTf7M6DAAA28aKn98SX/7y5Z1Q+kfn/0k8MTy1OgQAANvGPr8yM975tjd2QunnvvDXcde/r6oOAQDAtrHP3nuWoXRStR9DSimllFJKbeOqjbxT+vN7H6iaAABg23jhXs8Z/fH9Py9/sDoEAADbxgvmPnt0KP0/9z1UHQIA+OXwxGNPxM//6V/i4Ycfq1q2vunTd40Xvuh5sfOuO5f71tBZQy/PnzNjfKH06r/9SrU1Pr/2ogPiV1/4GzFp0siXrwIAbBM3/uDmmHfgr8fMWc+uWra+lfc/GLfednccefQh5b41dNbQyyah9O4VD1eH2g09cX+11W7S0FAMTRqK9EtL06+MSpV876pr4iWLXhk77rhTuQ8AsK1c870bY/ErXhIP/eLJqmXrm7HbTvGtb/8wFp50ZLlvDZ019PLrs6d3ffd9CpV96qB58/rWAQcdFPsfcGAccOCBcWCxXbeXioDaNud2Vw9cE//tvE/G9x9oOba1q3nu7WUdbce3aq2K73/mPfE3P2s7ppRSSk2syjfOtmG1nW97XUP9LfAb96tjbX/KY6l787EaU/+p9lMNes21kXdK/2Xlo1VTu0NfODuWXn9n/MX1P49JUzbEpKnDMWna+phc1IWvPiFmzJhe9exY+J6vxTUXvT4+/slL4uhFr4yddt6lOlJbGddfckF8775qtzQ/3vTxt8RvVHsb3R7/8/1Xxsxzzo1j96yaSpvOMe+tF8drN51gMKuuis986pY4cJPzbEk9rqV57tgW6+ih7R787Ivxwct/Uu2k52he3Dng89H7OW3TGb/yxM14Dlv1+vuTpGOXxa3l9tw4qbvPJtdeX8tg4zbr7yMAm+3q794Qp5xyzDZ/h/Cb3/x+nLDoqHJ/0DXcuHRp3Pz3y6q93g45/MVx5HHHVXvteq7h0SeKvfRp9sYw2DFc/BmKH12f1vAPVVs614I48pjj4sbrr4+bl21cW7mGY48tPyHv5MrOJ+TDwylodnZn7LHzqDX08ryZu4/++P5fV/2iOtTu0BfMiuuKUPp3d/1bTE6BdOr6ojYU2+vjrKOP6htKjzn5Ve2h9OKPxv0nXhKv269quvPyOK98IW+0VVZdd2F8Nd4Wv/vSmVVLkub4QsSb3tcJBClQffLmOPC91f4213JNLdqvZTuVnpOr5sTZv39iNG9p7+dj8Od0U4Pdv4not97bDvpgp71ca8SbL3xrJ3j2uPb+4zrHvlsE2HlRhNmtcC0ADC6FsVMXHx0PP766atn6pu+yQ/zdt34wKhAOsoZLLvhYfO2v/6za6+31b/wvcdZ5H6j22vVaw4OjgnGVHsutoTKWfubjF8bffO0vyrbkNa//zzG/CKA/KcJyd/vvvv991V67ZxfBuLmGXn51z91Gf3yf3mLtV0+sXlv2m77H1Pi/D62If1z1/+KuB+6Jf3rwX8v2JF1W/bWkex6w8TdEtc03qbgPxUP5tu1I2/5nxMffuzjuv/yL8Y/N9qJm7X9IxG0/jQdHtVdzFH/K/ZknxQmHLI/b7lzZ6LMtq+WaWqr9WrbHWhnfv/q+OPlNJ8WsrmN9n49mW5/ndNMa7P5NpFrXu+qncdt9h8YJx8/q7O9/cpw89ydx58/S8d7X3n/crHjp2X8aHz/75Ji9la5FKaXU4FUqHtPWNqvqvKPWUEir6PdnPJrj2v90NNeQvvdnaNKkcn2dx7TW9Nhpm1Q8zj/i8DJwbtiwoaz/8ZVLy0CaHuu2MqgW/cr5ijFpXPqG9k51zlfOmV7YC/UaelVt49eUlgvtU1W/Zff8c6yb+mRM3XFdTN3h6ZhSVJLe8k196idi9nP/rXxMWuerz1z0H9U++6A4aO5NcUf6usIHropLzr0wlqavb0zt8a24NrWPmqM4X3N81TQ06f5YevHvxdd+dnt87dzfi/dffFU8UPap9kfq8vhZPbY8X2O/q+8lS++v2tuOXVXsfzS+szzilr8q2qrzPbD0wpE+I+dqu5bmuUetI52nuAdLL2+cq9c6qn4j19rj/KnKc9Tt6T412+t13BY/jfkR127sN3Luns9Huv/NtqKaz2nZ1uu+1uNHH29dW9t+v3vRes9XxH2HHBz7j4yfHTNnR6xYVayn37X3GzfSVl9Lvd9W7feh85xtvK6ffbU4/tXb+45RSinVXuU/xeXbZml729RwekhbzTWk7fSa0Kea0ruh3dXUNr5ZxX86/RprSCYX7WV4rB4nF8dSlSG1eDz6+OPj0COPiNed/u5Yv359WV/50mdHtlN7Op76TRqaXIbQNK4OmJ0w2gmntXoNvapWv3SOupC2Kv5T9hsJo896unhcG1Of1XkHtTFn6eLjL6y2es1dLLpzsG97ZzNtz4njFx0Wt9x2W7W/se/I/qqr4qqb94p5B8wZOXbLklvjwE99Nj5xzqKYOXRbfPW9/z1WvPxD8YnUluptQ3H5e4sAUM1RzFbNl/peEbPfV/X71Idi3q0fja/eWR8bPc/ZCxfF6UWfl82NOPhtRVs6X7GeL18xN86oz/WpM2P/cu62a2meu7ldbMa98Z0VB3fmeN+pEVcsiaWr0rHOOiKdr5z/7TF0600bx/Y8/8pYevVQvLluf1uxliUt92BVEb6WfzPuP6jqN+rcvZ+PYqPR1t3e7752PWf91rbJ/hj3omW9D6zsfPFrvV9W2VKso8+19x030tbrXtTV+z7MXPiBOOOQm+Kqa1fG0J2Xx+UrTo0/eNNBfce0n0MppVTxnyL4FOFpcv+6YenSuPiCC8as1K9t/KgqXgPK8zbXkF4XyuDXu5IHH3ywrOQ9H/rQSCXNY23ju6t1DcVj/a5mGQrrPkX3Oqwec/zCOKwInqe/+Xfi4YcfHqm0n9qPXlgE0ipQbpxrY420dd2HXlXr3IFCW6dm1dI7o1PrQDptbUybtqZsH96woXxs1TJfPWd7+14xe3axPWtRvOei8+L4WdWxAw6OQ26+Ne4c1ffeuPLC34lzzynqwp/EvA9s7J8c8vY6iBV1561xy9xT4y0nzB4ZP3TAy4og+eO4Pb2w13ej7tuc+5zz48rlEStWpqDQMk9VneHV/qzZMSd+HH91zsfiuu7vZu++lua5m9upivvxskXzOtuz5sW8Ivim/xdQr+PEA6p+Q7Pj+JMPq4amvr3OX/R786IYuvZjnWv7wo/LMcWBrnMXj835i+fjpPn3xq13FPcg7bc+H9W5u2rkOe13X8t+Xc9Zr+cnVffz1e9epOpa78zZxY2sj1VVJslyu3jsce39xzXayqbRbSM1xn3Y/83vijlXnF88N8vjZWek/0M19hillFKbVuff4vKhrx/feGP5NZNjVeo3pup8zTWktrTVr5I1a9aUlVx0/vkjlTSPtY1vVm3UGgqd0JjaUgCdXO6Xbeldz9R38qT44XXXFtf5o/j0J/9w5Jyp0n5qv+Ha64o5iv4plBZjynF1SC23UyBtnDO19ala/bLe2qlZtTKMloF0Tfku6ZRpnY/vb7vjzrjt9jvKSl9WurpY/FNPPVUea5uvU+XB0W13XhlXDh0aB8zsai9rXhw0/8edd5BG2vaKl3/gz+KTn071wVg4alz3/J390W2pisCUgmz5J+W91FZs7HVanFvOu7HOKYNor3mqcSPb8+KN5bh3xtDlvx1/8J4L4rryXcbOsVHX0jx3c7uopGyr9lNTZz8dSDujj21s63H+Vd+LT7/nt+NLQ+/sXNcHTotOzi2OlX+q7VlzY+7IXJ1Kf2E2nqvt+eicf+N+UaOe0+J4z/taHa/HjVTV1lzbJvudPmW/kepu615vcXzF/bFq5PjKWLUiYs7sYi19r73PuJG2qt+o/WYVx/reh9Sho9gbeIxSSqmuKv7pLL/bpfw3uU8V7r777jGr1Da+USObjTWkKnb6V2Ht2rVlXXjBuZtUfazUNn5Ulf8rNjtrqKV3MIvU2AmUZVXvalah8gdXXxv/cMONo8539nv/eGQ7tafj37/mmuL1txNoO6G2qnK7M29t5D70qNrAoTSdYPnyu+Nd/2lxvH3OK+OMPV8bb9rj9HjDLm+pZtio83UH6YthO9/01DZfWelY+lPv37Ek3nvZ8njFGSeX31wytOq7cdHZH20EuaHYf9FpEbfcujEQjGf+Aw6J+ff+bXzpmkaIuuPKuCKKwFS+u1quNk040veaO6p+Rd35pSWdd9k2OfbTuK6es3nOYv3XlX1mx8I/+Ei8Yq974/6V1bGiRl9L49xd22m3HlNWvb/JOlbGdd/pvOtZ7vc6/8r7YnkRbup3elfdflMsbzv3rIPj4Gjcr2K+7/5krzj4wI0hqPX5SH/q/e7ntN99TVWMv/nWn44cW3XN5+KKexfEQeU7lmlty2Nl9fdh1LrHuhdVjVrvAa+IVxTXNzKm/LtwWufd0X7X3m9c2q8rnbt5L5p/n8e4D3d+6S9ixeKPxPsWR1xx+Xer9Y5x75RSSm1SyeQiLE0uQlK/Sp5++ukxK2kb36zy4/tCcw2dwFYHwfZK2s7ZXUnb+Gala05G7kWxndZWBsjieGrrPKZ3Nat1T5pcBM4b4o//69kj53rfeZ+IFx99VPlYt6Xj//DDG8pr6rw7WgXR6lx1OC3P11xDj6qN/EioFY913g7u5T89e+fYY+fiAouTr1/7dEyeMrnYnlocWR/D69bF2nXpO+8j1q1fF+s3bCgXkRZ30Z9eGie+8g2x8yY/EmpFXPOJj8S37612k71eGe8/9+QY+aE9938nPnnBTXHweX8YC2dVbeW4z0Wckdqa29XhEZ35V5z85/GmA6um0q3x5bP+PP2wnsqCePslb4/902Z5vuVx8qj9/10En47572jMNerYxjlWXv3H8fFv/vvItaz84m/F59OXNiaH/lZc9JbqFwqUGuuPxrlHrSOt91sxe+QedF3zqHXsHa84ZW58++a5I/fxjtbzd+5Nfe/nHrogouiz6bmT0fdr1D0oNdczet5S93Oa9LyvnfEr5iyIn9xU/4y0xvNTGLm/hVHrTg1j3IuOfvdv9Ln6XnvPcS33oFCOnZXGNP4+97gP5XN2X33fqvnmVM9dz3sHQJsrvrk0XnXacfHIE9U7jD1cf/VVZdAay4KXHBXHnnBitdduj52nxTf+dmm8/JTOzxLdntbw2OoisI3SeQMxvY2Stq7/3vfi73/ww05T4cVHvyReetJJsbSr/fCi/diivYyUaeDGbDli1x2mjFpDL7N3fdbon1N6/+P9b9Q3vviXKepWe5uaOnVKcXhyPL12zcjlJXN+5Xlx0GFHxo47bblfM7ryqvPjY/edEp9+azPgbQHFC/6ffHR5vOxPm8Fk6xq5lkUrtsy5b/t8nH3l3PjA+7qC4Fa01Z6PzdXjXmy36wVgi/v2310Xr37V8fHok513GLeF3XeaGv/rG9fGK059abm/Pa3hF08115ByXTO1dQyVAbXZXue/oq0cUvVI73QOd3qO9EhZsfrxoLvtOHoNvczaZdr4fs3oKae/LRb95ht71vGnvC5euvjVcVJX+7wFR8UOO+7YOudEa9ZJp8ahN90cd7Qc25xadfuPY/leczsfM2+jqq/lmgmd+/645sLPN+7DT+PLn1sWc+cfnOUatvTzMb4a/F5sH+tVSim1zSp9lDx521X9jT7b4xo62+kxVTP/pTGdj95Twuz07bR1+lV905+qofhv57Har9vKj/XTdtsaWqo28k7pqie73859Brntc3HWX6ZfnfXieOdn3xkHdFq3jc099/1XxifO/3rUnxbvddr5ce6Js6u9Zxj3AoAu1151Yxx6yD4xZ862+vww4r77VsZNN98Vx594ZLlvDZ019LLnTlNGf3z/wJPrq0MAAL8cHn/syfj7H90STz217X7N6I477hCHH3Fw7LJr50sXraH/l3A+Z6fJo0Ppg0/1+TmjAACwFTx7x0mjv6a0/CIApZRSSimltmVVRt4pfWj1pt99BQAAW9OMHYY6H98vXrx4+LIlX+kZSpdd/fVqCwAAxu+MM86Iu+59rNobLYXSd5x5+mChdNmy9N3hAAAwPuedd17svffeWy6UXnrppVULAADPBKtXr45Vq1bFlClTYtq0aeWvD21KP2d0eHh41M8bTeqfQZrGr1mzZqBQOnpmAADIQCgFACA7oRQAgOwmHEqXLl1aFgAAbK4JhVJhFACALWncoVQgBQAgmTx5cvld+elxc40rlNaB9LjjjisfAQB4ZkpBNP2IqMMPP7x83NxgOnAoFUgBAEhSAE217777xg477BDvete7NjuYTujj++ZH+D7OBwB45qgD6f777x/77bdfnHDCCXHwwQfHJZdcslnBdOBQmt4hbVbNO6cAAM8cKXSeeeaZ8brXvS5e85rXxGGHHVaG0yOOOCKuv/76TX7r06AmNgoAgGek9evXx5IlS+LDH/5wvOENb4hFixbFMcccEwsWLIhjjz02NmzYUPUcnwmFUh/fAwA8M6VQunbt2rKefvrpkce60vGJmFAo7fVRPgAATISP7wEAyE4oBQAgu+0ylNY/dqpfjcd4+ye9xkxkri1l0HNvibX36zvee7Clzlsbq8/mrn1zxwMA47dFQ2l6wR5v9dL9davN6qfXOXq1N7W1Jb3aexlv/9pExw0q3bvNOUcaW4/vNU/dp1n92re2bXUeAGDzDC1evHj4siVfiYdWD1dNoy27+uuxbNmyuPTSS6uWiUnhYKxAWRur73jmSiZy7u7H2iBzjed83Zpj0/ZY2s7T7/yDrq3u172GQcYmvc4z1vmb52uev20tSfdc3fOPtd+t7XjbeWv95gKA/+hWr14dt99+e9xzzz3x4IMPVq0bDQ0NxfDwcPnYtMcee8Tzn//82HvvvWPNmjXl4133PlYdHW3GDkPxjjNP335D6VjGChZjGWstvdbbNnd3v/Fca7d+Ywedt9mvbb3dBl3/oOevdfcfZHxbn17zDNo3qduax8caP9ZxAPhll0Lpt771rfL328+YMaNqjTKIJul4+rGkw8Mbyrb6x0U98sijcffd/xxHH3301g+l6cU5GeQFerwv5GP139LzJfX19JLGd8/Ta97xrq+ffuvqXku3tjV3azvea0y/udrOP6h6zn7n7adtfL091mNTd9sgfQDgl1kKnV/4whfijDPOKPc7wXNDbEghdMNwPP74E2UQXV8k0/Xr1sdTq5+KX/zisdhj993i+z9YGq99zWu3bihNL8y1QV6gx/tCPlb/XmFhoppz1XN3PzaP1br3a73aN9eg89b9xlpv23ypLWk7T1v/Lak+dy2dq9cau4+1jU26x7fNl3SPT+pzjKVtPgD4ZVCH0re+9a3lfvptTWUoLR5TPfroY7Fu3boilBbBtAilTzz5ZKxZvSZ2333XuOHGH2zdUNrrxb+Xun/9Aj/IC/iWDAKDnjNp9m3b7p6r19y92vtJY2rN8w6i+1ybs676nBMdnwyy7l5r7j5Hc79t3rb1jDWmaazxYxlPXwD4j6YZSut3SdM7o3U4feTRR2Pd0+vKYLquCKXpo/sUQlMovfFHP9x6obR+gU8vws3tXuoX7OYL97Z8EW87V6/zd7f32m+2DzrXeGzO2FqaI6nXO5bu6xlkTFP3ese6hn7Hm8ea62j2H3R8MtZ+t17Hm+319lhzAcB/dNtlKH39619f7jdfmJNeL8ptL+K1thfzer6JGM9cvdbb1La+Wn1skD4T0T027ffSdo66f/extnl77Xcfq/Vq75b6jaV7nrYx3evp1ydpW1+zrTm+u1/SNr6pPj5WPwD4ZbEtQ+m4f05pekFuvrg3t2tjvWjXL+xNqa1XDXK8qdfxtr61+rrqdXXv59R9PW3XUa+17dggJjqul+Zau6tN81i93X3v2/rU6r71fegem/abY9uO14/NqtuS5vkAgC1r4FBah4C6at0v1OkFvLutTepTv9h369U+Xmmeej3NNbXN3+xTbzfH1FJbPWcv/Y5NRH0dzerWa71J6r+l1zSW7vU2ayK6x3fv19dX34fm9aY+3def9uuxSX28HltX3dbsCwBseVv8NzrVL+RbWpq7u9q0HW+21e3N47XUtrXWvznqgNSs8Uj9u699vHOMR/c6m/vN9rGkfvVau8d27yfN7aZB29v6dd+37u16v9arfVC5xwNAP5MnT45p06bFs541LXbY4Vmx2667xu677xbTp+8RM2ZMj1122bnqOX4TCqXNF7x6Oz32evHvZTz9U9/uatOrX1tbm+5r6+5btzX7det3bFDd6+iu8aqvO43td/2bo15Xc3397lW/6+h3bCxp7JYYn6q+b3Ulzcd6GwCeCSZNmhSLTjoxfv+ss+JjF3w0Lrn4ovjsZy6Jb3z9b+Knt/6kCKo7VD3Hb0KhtH4xbr4ob6kX5zoIbG6o6KU+1rbe+npSn3odOXSfu15Xsyainre+B7nU5++1luY62/q0XX/qU1c63tann7bx3XPUx5L0mPa79Ro7qNzjAWAs++23XxxzzDFxxJFHjtT+BxwQc/faq+oxMVv04/vNNciL/liac/QKDf3mrY+19WvO3W+eus9E9Rs/yNrbDLr2ptSnWb3akrTda93jvR/1+rrX26vqPs3Hpu6+zf26rd/4JPXrPpb26/EA8EyQvuv+ok9fHL/56lcXr4MvjQULDo/58w+LF7zgRbHnnrPL79afqAn/mtHxaHtB79arzyAv+vW4tjn6zdtsr8/Ta/yg82xpbfP3O2f3sbSfjGft/eYfVH3eXjZ3/m2l3/1LtsS9AoDtVfePhJo0aXKceMLC2GeffYoQumfVK2LOnDnx3Oc+N/bb/6C4997lW/+H5wMA8MzRFkp//6zfi6OOOir2mD696hWxyy67xK677hrTpz9nwqF0u/r4HgCA7dfW/PheKAUAYCDb3XffAwDwzLRo0aI45ZRT4qTisa4FL35xPO/Xfq3qMTFCKQAAA0kf37/nnPfGwhNOiPnzD419990vXvjCfWKvvX4ldtttuo/vAQDY+tavXx9r166NNWvWFgF0Tfziscfi0Ud/EQ8//Eg89NDD8fjjT1Q9x08oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIAxpV8zmir9WKhUw8PF4/rOdqfWx4bUVtRECKUAAPSVwuj6IoCuW7eu/LFQabuz/3Sn1q8bOZb6ToRQCgBAT9OnT49HHnkkhoaK4DhpUkyePCmmTJkcU6dOiZ122jF23nnn2G23XYt+u8dznj0jZs3cs/xZpnvsvkc1w2CGFi9ePHzZkq/EQ6vbU+2yq78ey5Yti0svvbRqAQDgmSD9hqZbbrkl7rnnnnjwoQer1rGlQDpz5sw46KCDYs2aNbH33nvHXfc+Vh0dbcYOQ/GOM08XSgEAaJdC6apVq2LKlCkxbdq08p3SpqGhofLj+vTYlPZTpfGDhlIf3wMAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkJ1QCgDAwCZPnhzTpk0ra+rUqSOPdaXjEyGUAgAwsBQ6jzrqqJg3b15Z8+fPj0WLFsXZZ58dl156aUyaNLF4KZQCADCw9evXxw033FAG0iOPPDJe9apXxbvf/e44/fTTy8cNGzZUPcdHKAUAYGAplKZasmRJzJw5swynL3rRi2LBggVlIE3HJkIoBQCgr6GhoVGVwmeqj3zkI+XH+fvuu+9mBdJEKAUAoK8UPNuC6fDwcLz85S8vH9N+d5/xEEoBAOgrhdL0DUzdoTMF0XXr1m12IE2EUgAA+qoDabe6rRlG2/oNQigFAKCvtndJB6nxEEoBAOirVyhN6sfNJZQCANDXk08+OaEaj6HFixcPX7bkK/HQ6uGqabRlV389Fi5cWO0BAMD47L333nHXvY9Ve6PN2GEo3nHm6WOH0n322rXaAgCAidnsUAoAAFtLHUp9TSkAANkJpQAAZCeUAgCQnVAKAEB2QikAANmNfPc9AADkMPIjoap9AADIIOL/AyjHPTPmFkSjAAAAAElFTkSuQmCC" alt="" />




上一篇:基于visual Studio2013解决C语言竞赛题之0501挑选素数


下一篇:for循环、for循环嵌套