redis的淘汰机制的分享

本文目的:了解redis的内存优化,对后续可能的redis优化工作提供一定的帮助

名词解释

过期策略:即redis针对过期的key使用的清除策略,策略为,定期删除+惰性删除
内存淘汰机制:即内存占用达到内存限制设定值时触发的redis的淘汰策略来删除键

说明:Redis2.6以后expire精度可以控制在0到1毫秒内,key的过期信息以绝对Unix时间戳的形式存储(Redis2.6之后以毫秒级别的精度存储),所以在多服务器同步的时候,一定要同步各个服务器的时间

redis key过期的方式有三种
1、定期删除,redis默认每隔100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每隔100ms将所有的key检查一次,而是随机抽取进行检查。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。

	在 Redis 2.6 版本中, 程序规定 serverCron 每秒运行 10 次, 平均每 100 毫秒运行一次。 从 Redis 2.8 开始, 用户可以通过修改 hz选项来调整 serverCron 的每秒执行次数, 具体信息请参考 redis.conf 文件中关于 hz 选项的说明

2、惰性删除,也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。

这种删除策略对CPU是友好的,删除操作只有在不得不的情况下才会进行,不会其他的expire key上浪费无谓的CPU时间。
但是这种策略对内存不友好,一个key已经过期,但是在它被操作之前不会被删除,仍然占据内存空间。如果有大量的过期键存在但是又很少被访问到,那会造成大量的内存空间浪费。expireIfNeeded(redisDb *db, robj *key)函数位于src/db.c。

3、当前已用内存超过maxmemory限定时,触发主动清理策略。即淘汰策略

定期删除
Redis会周期性的随机测试一批设置了过期时间的key并进行处理。测试到的已过期的key将被删除。典型的方式为,Redis每秒做10次如下的步骤:

  • 随机测试100个设置了过期时间的key
  • 删除所有发现的已过期的key
  • 若删除的key超过25个则重复步骤1

这是一个基于概率的简单算法,基本的假设是抽出的样本能够代表整个key空间,redis持续清理过期的数据直至将要过期的key的百分比降到了25%以下。这也意味着在任何给定的时刻已经过期但仍占据着内存空间的key的量最多为每秒的写操作量除以4.

除了主动淘汰的频率外,Redis对每次淘汰任务执行的最大时长也有一个限定,这样保证了每次主动淘汰不会过多阻塞应用请求

将redis.conf 配置文件中的hz调大将会提高Redis主动淘汰的频率,如果你的Redis存储中包含很多冷数据占用内存过大的话,可以考虑将这个值调大,但Redis作者建议这个值不要超过100。我们实际线上将这个值调大到100,观察到CPU会增加2%左右,但对冷数据的内存释放速度确实有明显的提高(通过观察keyspace个数和used_memory大小)。

可以看出timelimit和server.hz是一个倒数的关系,也就是说hz配置越大,timelimit就越小。换句话说是每秒钟期望的主动淘汰频率越高,则每次淘汰最长占用时间就越短。这里每秒钟的最长淘汰占用时间是固定的250ms(1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/100),而淘汰频率和每次淘汰的最长时间是通过hz参数控制的。

当REDIS运行在主从模式时,只有主结点才会执行上述这两种过期删除策略,然后把删除操作”del key”同步到从结点。

过期策略存在的问题,由于redis定期删除是随机抽取检查,不可能扫描清除掉所有过期的key并删除,然后一些key由于未被请求,惰性删除也未触发。这样redis的内存占用会越来越高。此时就需要内存淘汰机制

内存淘汰机制
redis配置文件中可以使用maxmemory 将内存使用限制设置为指定的字节数。当达到内存限制时,Redis会根据选择的淘汰策略来删除键。(ps:没搞明白为什么不是百分比)

策略有如下几种:(LRU的意思是:Least Recently Used最近最少使用的,LFU的意思是:Least Frequently Used最不常用的)

allkeys-lru:在主键空间中,优先移除最近未使用的key。

volatile-lru:在设置了过期时间的键空间中,优先移除最近未使用的key。

allkeys-random:在主键空间中,随机移除某个key。

volatile-random:在设置了过期时间的键空间中,随机移除某个key。

volatile-ttl:在设置了过期时间的键空间中,具有更早过期时间的key优先移除。

noeviction:永不过期。返回错误当memory_used内存已经超过maxmemory的设定,对于所有的读写请求,都会触发redis.c/freeMemoryIfNeeded(void)函数以清理超出的内存。注意这个清理过程是阻塞的,直到清理出足够的内存空间。所以如果在达到maxmemory并且调用方还在不断写入的情况下,可能会反复触发主动清理策略,导致请求会有一定的延迟

清理时会根据用户配置的maxmemory-policy来做适当的清理(一般是LRU或TTL),这里的LRU或TTL策略并不是针对redis的所有key,而是以配置文件中的maxmemory-samples个key作为样本池进行抽样清理。

maxmemory-samples在redis-3.0.0中的默认配置为5,如果增加,会提高LRU或TTL的精准度,redis作者测试的结果是当这个配置为10时已经非常接近全量LRU的精准度了,并且增加maxmemory-samples会导致在主动清理时消耗更多的CPU时间,建议:

  • 尽量不要触发maxmemory,最好在mem_used内存占用达到maxmemory的一定比例后,需要考虑调大hz以加快淘汰,或者进行集群扩容。
  • 如果能够控制住内存,则可以不用修改maxmemory-samples配置;如果Redis本身就作为LRU cache服务(这种服务一般长时间处于maxmemory状态,由Redis自动做LRU淘汰),可以适当调大maxmemory-samples。
# The default of 5 produces good enough results. 10 Approximates very closely 
# true LRU but costs a bit more CPU. 3 is very fast but not very accurate. 
# 
maxmemory-samples 5

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下
redis的淘汰机制的分享
1、新数据插入到链表头部;
2、每当缓存命中(即缓存数据被访问),则将数据移到链表头部;
3、当链表满的时候,将链表尾部的数据丢弃。

Redis中的LRU与常规的LRU实现并不相同,常规LRU会准确的淘汰掉队头的元素,但是Redis的LRU并不维护队列,只是根据配置的策略要么从所有的key中随机选择N个(N可以配置)要么从所有的设置了过期时间的key中选出N个键,然后再从这N个键中选出最久没有使用的一个key进行淘汰。

主键空间和设置了过期时间的键空间:举个例子,假设我们有一批键存储在Redis中,则有那么一个哈希表用于存储这批键及其值,如果这批键中有一部分设置了过期时间,那么这批键还会被存储到另外一个哈希表中,这个哈希表中的值对应的是键被设置的过期时间。设置了过期时间的键空间为主键空间的子集。

Replication link和AOF文件中的过期处理
为了获得正确的行为而不至于导致一致性问题,当一个key过期时DEL操作将被记录在AOF文件并传递到所有相关的slave。也即过期删除操作统一在master实例中进行并向下传递,而不是各salve各自掌控。这样一来便不会出现数据不一致的情形。当slave连接到master后并不能立即清理已过期的key(需要等待由master传递过来的DEL操作),slave仍需对数据集中的过期状态进行管理维护以便于在slave被提升为master会能像master一样独立的进行过期处理。

为什么要使用近似LRU?
1、性能问题,由于近似LRU算法只是最多随机采样N个key并对其进行排序,如果精准需要对所有key进行排序,这样近似LRU性能更高

2、内存占用问题,redis对内存要求很高,会尽量降低内存使用率,如果是抽样排序可以有效降低内存的占用

3、实际效果基本相等,如果请求符合长尾法则,那么真实LRU与Redis LRU之间表现基本无差异

4、在近似情况下提供可自配置的取样率来提升精准度,例如通过 CONFIG SET maxmemory-samples 指令可以设置取样数,取样数越高越精准,如果你的CPU和内存有足够,可以提高取样数看命中率来探测最佳的采样比例。

上一篇:Redis键过期策略


下一篇:LRU缓存删除最不经常使用的记录