- Quciksort
- Mergesort
- Insertionsort
- Bubblesort
- Selectionsort
- Shellsort
- Heapsort
- Countsort
- Radixsort
- Summary
Quciksort
void quick_sort(vector<int> &nums, int l, int r) {
if (l + 1 >= r) {
return;
}
int first = l, last = r - 1, key = nums[first];
while (first < last) {
while (first < last && nums[last] >= key) {
--last;
}
nums[first] = nums[last];
while (first < last && nums[first] <= key) {
++first;
}
nums[last] = nums[first];
}
nums[first] = key;
quick_sort(nums, l, first);
quick_sort(nums, first + 1, r);
}
Mergesort
void merge_sort(vector<int> &nums, int l, int r, vector<int> &temp) {
if (l + 1 >= r) {
return;
}
// divide
int m = l + (r - l) / 2;
merge_sort(nums, l, m, temp);
merge_sort(nums, m, r, temp);
// conquer
int p = l, q = m, i = l;
while (p < m || q < r) {
if (q >= r || (p < m && nums[p] <= nums[q])) {
temp[i++] = nums[p++];
} else {
temp[i++] = nums[q++];
}
}
for (i = l; i < r; ++i) {
nums[i] = temp[i];
}
}
Insertionsort
void insertion_sort<vector<int> &nums, int n){
for (int i = 0; i < n; ++i) {
for (int j = 0; j < nums[j]; ++j) {
swap(nums[j], nums[j - 1]);
}
}
}
Bubblesort
void bubble_sort(vector<int> &nums, int n) {
bool swapped;
for (int i = 1; i < n; ++i) {
swapped = false;
for (int j = 1; j < n - i + 1; ++j) {
if (nums[j] < nums[j - 1]) {
swap(nums[j], nums[j - 1]);
swapped = true;
}
}
if (!swapped) {
break;
}
}
}
Selectionsort
void selection_sort(vector<int> &nums, int n) {
int mid;
for (int i = 0; i < n - 1; ++i) {
mid = i;
for (int j = 0; j < n; ++j) {
if (nums[j] < nums[mid]) mid = j;
}
swap(nums[mid], nums[i]);
}
}
Shellsort
void shellSort(vector<int> &q) {
int gap = q.size() / 2;
while (gap) {
for (int i = gap; i < q.size(); i += gap) {
int t = q[i], j;
for (j = i - gap; j >= 0; j -= gap) {
if (q[j] > t)
q[j + gap] = q[j];
else
break;
}
q[j + gap] = t;
}
gap /= 2;
}
}
Heapsort
void push_down(vector<int> &heap, int size, int u) {
int t = u, left = u * 2, right = u * 2 + 1;
if (left <= size && heap[left] > heap[t]) t = left;
if (right <= size && heap[right] > heap[t]) t = right;
if (u != t) {
swap(heap[u], heap[t]);
push_down(heap, size, t);
}
}
void push_up(vector<int> &heap, int u) {
while (u / 2 && heap[u / 2] < heap[u]) {
swap(heap[u / 2], heap[u]);
u /= 2;
}
}
void heapSort(vector<int> &q, int n) {
int size = n;
for (int i = 1; i <= n; i++) push_up(q, i);
for (int i = 1; i <= n; i++) {
swap(q[1], q[size]);
size--;
push_down(q, size, 1);
}
}
Countsort
void countingSort(vector<int> &q, int n) {
vector<int> cnt(101, 0);
for (int i = 0; i < n; i++) cnt[q[i]]++;
for (int i = 0, k = 0; i <= 100; i++) {
while (cnt[i]) {
q[k++] = i;
cnt[i]--;
}
}
}
Radixsort
不超过999
int get(int x, int i) {
while (i--) x /= 10;
return x % 10;
}
void radixSort(vector<int> &q, int n) {
vector<vector<int>> cnt(10);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 10; j++) cnt[j].clear();
for (int j = 0; j < n; j++) cnt[get(q[j], i)].push_back(q[j]);
for (int j = 0, k = 0; j < 10; j++) {
for (int x : cnt[j]) q[k++] = x;
}
}
}
Summary
Algorithm | Complexity | Auxiliary Space | Stability |
---|---|---|---|
Bubble Sort | \(O(n^2)\) | \(O(1)\) | Yes |
Selection Sort | \(O(n^2)\) | \(O(1)\) | No |
Insertion Sort | \(O(n^2)\) | \(O(1)\) | Yes |
Merge Sort | \(O(n\log{n})\) | \(O(n)\) | Yes |
Qucik Sort | \(O(n\log{n})\) | \(O(n\log{n})\) | No |
Heap Sort | \(O(n\log{n})\) | \(O(1)\) | No |
Shell Sort | \(O(n\log{n})\) | \(O(n\log{n})\) | No |
Count Sort | \(O(n+k)\) | \(O(n+k)\) | Yes |
Bucket Sort | \(O(n+k)\) | \(O(n+k)\) | Yes |
Radix Sort | \(O(n*k)\) | \(O(n+k)\) | Yes |