T1 小 M 的作物
先从简化题目入手,考虑先去掉 \(c\) 的额外收益。然后尝试将所有作物种在 \(B\), 则目前得到了 \(\sum \limits_{i = 1} ^n b_i\) 的收益。
接下来我们将每一个作物 \(i\) 分成两个物品,收益分别为 \(a_i,-b_i\),且规定如果想要选收益为 \(a_i\) 的物品,则一定也要选收益为 \(-b_i\) 的物品。
于是现在成为了最大权闭合子图的裸题。
再加上 \(c\) 的额外收益。我们可以分别将每一个额外收益 \(j\),分成两个物品,收益分别为 \(c_{1, j},c_{2, j}\),且规定如果想要得到 \(c_{1, j}\) 则必须选完收益为 \(\{a_i|i \in K_j\}\) 的物品, 想要得到 \(c_{2, j}\) 则必须选完收益为 \(\{-b_i|i \in K_j\}\) 的物品。
会发现它仍然是一个最大权闭合子图的裸题。
T2 Strange Set
CF 2700 确实假的离谱。
\(A\) 序列已经给出了非常明确的依赖关系,且权值 \(B\) 固定,所以它是一道最大权闭合子图的裸题。
但是直接莽会发现因为边数在 \(A\) 中所有元素都相等的情况下会达到 \(n^2\) 级别,于是考虑优化边。
很显然有这样的关系,若 \(a_p=a_q=a_i(i \in [3, n], p, q \in [1, i - 1], p \neq q)\),则在依赖关系中,\(a_p, a_q\) 都依赖于 \(a_i\),且 \(a_p\) 依赖于 \(a_q\)。
那么直接按照题目给定的依赖关系连边会发现我们连了 \(a_p \to a_q, a_p \to a_i, a_q \to a_i\),但其实这和我们只连 \(a_p \to a_q, a_q \to a_i\) 是等价的。
也就是说对于每一个 \(a_i\),我们暴力枚举 \(a_i\) 的约数,让该数目前最晚出现的位置与当前位置连边即可。
转化到这里,仍然是一个最大权闭合子图的裸题。