https://www.acwing.com/problem/content/1177/
\(强连通必然半连通,将强连通图转化为拓补图,从起点出发,能走的所有\color{Red}{最长的路径即为最大半连通子图}\)
\(问题就转化为在拓补图上做dp的问题\)
\(注意缩点后,每个点间只用保留一条边,连通子图只和点以及它们之间是否有连接关系有关,与有几条边无关.\)
#include <bits/stdc++.h>
using namespace std;
#define IO ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
inline int lowbit(int x) { return x & (-x); }
#define ll long long
#define pb push_back
#define PII pair<int, int>
#define x first
#define y second
#define inf 0x3f3f3f3f
const int N = 1e5 + 10, M = 2e6 + 10;
int n, m, mod;
int h[N], hs[N], e[M], ne[M], idx;
int dfn[N], low[N], timestamp;
int stk[N], top;
bool in_stk[N];
int id[N], scc_cnt, scc_size[N];
int f[N], g[N];
void add(int h[], int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void tarjan(int u) {
dfn[u] = low[u] = ++timestamp;
stk[++top] = u, in_stk[u] = true;
for (int i = h[u]; ~i; i = ne[i]) {
int j = e[i];
if (!dfn[j]) {
tarjan(j);
low[u] = min(low[u], low[j]);
}
else if (in_stk[j]) low[u] = min(low[u], dfn[j]);
}
if (dfn[u] == low[u]) {
++scc_cnt;
int y;
do {
y = stk[top--];
in_stk[y] = false;
id[y] = scc_cnt;
scc_size[scc_cnt]++;
} while (y != u);
}
}
int main() {
IO;
cin >> n >> m >> mod;
memset(h, -1, sizeof h);
memset(hs, -1, sizeof hs);
while (m--) {
int a, b;
cin >> a >> b;
add(h, a, b);
}
for (int i = 1; i <= n; ++i)
if (!dfn[i]) tarjan(i);
unordered_set<ll> S;
for (int i = 1; i <= n; ++i)
for (int j = h[i]; ~j; j = ne[j]) {
int k = e[j];
int a = id[i], b = id[k];
ll hash = a * 1000000ll + b;
if (a != b && !S.count(hash)) {
add(hs, a, b);
S.insert(hash);
}
}
for (int i = scc_cnt; i; --i) {
if (!f[i]) {
f[i] = scc_size[i];
g[i] = 1;
}
for (int j = hs[i]; ~j; j = ne[j]) {
int k = e[j];
if (f[k] < f[i] + scc_size[k]) {
f[k] = f[i] + scc_size[k];
g[k] = g[i];
}
else if (f[k] == f[i] + scc_size[k])
g[k] = (g[k] + g[i]) % mod;
}
}
int maxf = 0, sum = 0;
for (int i = 1; i <= scc_cnt; ++i)
if (f[i] > maxf) {
maxf = f[i];
sum = g[i];
}
else if (f[i] == maxf) sum = (sum + g[i]) % mod;
cout << maxf << '\n';
cout << sum << '\n';
return 0;
}