题目描述
给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数。
输入输出格式
输入格式:
输入文件名为factor.in。
共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开。
输出格式:
输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。
输入输出样例
输入样例#1:
1 1 3 1 2
输出样例#1:
3
说明
【数据范围】
对于30% 的数据,有 0 ≤k ≤10 ;
对于50% 的数据,有 a = 1,b = 1;
对于100%的数据,有 0 ≤k ≤1,000,0≤n, m ≤k ,且n + m = k ,0 ≤a ,b ≤1,000,000。
noip2011提高组day2第1题
------------------------------------------------------------------------------------------------------------
随便一推导,ans为C(m+n,n) * a^n * b^m
快速幂取模,组合数,逆元(扩展欧几里得或欧拉定理)
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long ll;
const int MOD=;
ll a,b,k,n,m;
ll powMod(ll a,ll b){
a%=MOD;b%=MOD;
ll ans=;
for(;b;b>>=,a=(a*a)%MOD)
if(&b) ans=(ans*a)%MOD;
return ans;
}
ll C(ll n,ll k){
ll s1=,s2=;
if(k>n-k) k=n-k;
for(int i=;i<=k;i++){
s1=s1*(n-i+)%MOD;
s2=s2*i%MOD;
}
return s1*powMod(s2,MOD-)%MOD; //in
}
int main(){
scanf("%lld%lld%lld%lld%lld",&a,&b,&k,&n,&m);
printf("%lld",C(m+n,m)*powMod(a,n)*powMod(b,m)%MOD); }