数据的特征工程之Scikit-learn

数据的特征工程

从数据中抽取出来的对预测结果有用的信息,通过专业的技巧进行数据处理,使得特征能在机器学习算法中发挥更好的作用。优质的特征往往描述了数据的固有结构。

最初的原始特征数据集可能太大,或者信息冗余,因此在机器学习的应用中,一个初始步骤就是选择特征的子集,或构建一套新的特征集,减少功能来促进算法的学习,提高泛化能力和可解释性。

例如:你要查看不同地域女性的穿衣品牌情况,预测不同地域的穿衣品牌。如果其中含有一些男性的数据,是不是要将这些数据给去除掉

特征工程的意义

  • 更好的特征意味着更强的鲁棒性
  • 更好的特征意味着只需用简单模型
  • 更好的特征意味着更好的结果

特征工程之特征处理

特征工程中最重要的一个环节就是特征处理,特征处理包含了很多具体的专业技巧

  • 特征预处理
    • 单个特征
      • 归一化
      • 标准化
      • 缺失值
    • 多个特征
      • 降维
      • PCA

特征工程之特征抽取与特征选择

如果说特征处理其实就是在对已有的数据进行运算达到我们目标的数据标准。特征抽取则是将任意数据格式(例如文本和图像)转换为机器学习的数字特征。而特征选择是在已有的特征中选择更好的特征。

Scikit-learn库的使用

# 特征抽取步骤

# 1.导入包
from sklearn.feature_extraction.text import CountVectorizer

# 2.实例化CountVectorizer

vector = CountVectorizer()

# 3.调用fit_transform输入并转换数据

res = vector.fit_transform(["life is short,i like python","life is too long,i dislike python"])

# 打印结果
print(vector.get_feature_names())

print(res.toarray())

['dislike', 'is', 'life', 'like', 'long', 'python', 'short', 'too']
[[0 1 1 1 0 1 1 0]
 [1 1 1 0 1 1 0 1]]
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Imputer
from sklearn.feature_selection import VarianceThreshold
from sklearn.decomposition import PCA
import jieba
import numpy as np
def dictvec():
    """
    字典数据抽取
    :return: None
    """
    # 实例化
    dict = DictVectorizer(sparse=False)

    # 调用fit_transform
    data = dict.fit_transform([{'city': '北京','temperature': 100}, {'city': '上海','temperature':60}, {'city': '深圳','temperature': 30}])

    print(dict.get_feature_names())

    print(dict.inverse_transform(data))

    print(data)

    return None

if __name__ == "__main__":
    dictvec()
['city=上海', 'city=北京', 'city=深圳', 'temperature']
[{'city=北京': 1.0, 'temperature': 100.0}, {'city=上海': 1.0, 'temperature': 60.0}, {'city=深圳': 1.0, 'temperature': 30.0}]
[[  0.   1.   0. 100.]
 [  1.   0.   0.  60.]
 [  0.   0.   1.  30.]]
def countvec():
    """
    对文本进行特征值化
    :return: None
    """
    cv = CountVectorizer()

    data = cv.fit_transform(["人生 苦短,我 喜欢 python", "人生漫长,不用 python"])

    print(cv.get_feature_names())

    print(data.toarray())

    return None

if __name__ == "__main__":
    countvec()
['python', '不用', '人生', '人生漫长', '喜欢', '苦短']
[[1 0 1 0 1 1]
 [1 1 0 1 0 0]]
def cutword():

    con1 = jieba.cut("今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。")
    con2 = jieba.cut("我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。")
    con3 = jieba.cut("如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。")

    # 转换成列表
    content1 = list(con1)
    content2 = list(con2)
    content3 = list(con3)

    # 吧列表转换成字符串
    c1 = ' '.join(content1)
    c2 = ' '.join(content2)
    c3 = ' '.join(content3)

    return c1, c2, c3


def hanzivec():
    """
    中文特征值化
    :return: None
    """
    c1, c2, c3 = cutword()

    print(c1, c2, c3)
    print("-"*28)

    cv = CountVectorizer()

    data = cv.fit_transform([c1, c2, c3])

    print(cv.get_feature_names())
    print("-"*28)
    print(data.toarray())

    return None

if __name__ == "__main__":
    hanzivec()
今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。 我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。 如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。
----------------------------
['一种', '不会', '不要', '之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '这样']
----------------------------
[[0 0 1 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 2 0 1 0 2 1 0 0 0 1 1 0 0 0]
 [0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1 1]
 [1 1 0 0 4 3 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 2 1 0 0 1 0 0]]
# TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类
# TF-IDF作用:用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度

def tfidfvec():
    """
    中文特征值化
    :return: None
    """
    c1, c2, c3 = cutword()

    print(c1, c2, c3)

    tf = TfidfVectorizer()

    data = tf.fit_transform([c1, c2, c3])

    print(tf.get_feature_names())

    print(data.toarray())

    return None

if __name__ == "__main__":
    tfidfvec()
今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。 我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。 如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。
['一种', '不会', '不要', '之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '这样']
[[0.         0.         0.21821789 0.         0.         0.
  0.43643578 0.         0.         0.         0.         0.
  0.21821789 0.         0.21821789 0.         0.         0.
  0.         0.21821789 0.21821789 0.         0.43643578 0.
  0.21821789 0.         0.43643578 0.21821789 0.         0.
  0.         0.21821789 0.21821789 0.         0.         0.        ]
 [0.         0.         0.         0.2410822  0.         0.
  0.         0.2410822  0.2410822  0.2410822  0.         0.
  0.         0.         0.         0.         0.         0.2410822
  0.55004769 0.         0.         0.         0.         0.2410822
  0.         0.         0.         0.         0.48216441 0.
  0.         0.         0.         0.         0.2410822  0.2410822 ]
 [0.15698297 0.15698297 0.         0.         0.62793188 0.47094891
  0.         0.         0.         0.         0.15698297 0.15698297
  0.         0.15698297 0.         0.15698297 0.15698297 0.
  0.1193896  0.         0.         0.15698297 0.         0.
  0.         0.15698297 0.         0.         0.         0.31396594
  0.15698297 0.         0.         0.15698297 0.         0.        ]]
def mm():
    """
    归一化处理
    :return: NOne
    """
    mm = MinMaxScaler(feature_range=(2, 3))

    data = mm.fit_transform([[90,2,15,40],[60,4,15,45],[75,3,13,46]])  

    print(data)

    return None

if __name__ == "__main__":
    mm()
    
# 在特定场景下最大值最小值是变化的,另外,最大值与最小值非常容易受异常点影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景
[[3.         2.         3.         2.        ]
 [2.         3.         3.         2.83333333]
 [2.5        2.5        2.         3.        ]]
def stand():
    """
    标准化缩放
    :return:
    """
    std = StandardScaler()

    data = std.fit_transform([[ 1., -1., 3.],[ 2., 4., 2.],[ 4., 6., -1.]])

    print(data)

    return None

if __name__ == "__main__":
    stand()
[[-1.06904497 -1.35873244  0.98058068]
 [-0.26726124  0.33968311  0.39223227]
 [ 1.33630621  1.01904933 -1.37281295]]
def im():
    """
    缺失值处理
    :return:NOne
    """
    # NaN, nan
    im = Imputer(missing_values='NaN', strategy='mean', axis=0)  # 此处选择平均值填充

    data = im.fit_transform([[1, 2], [np.nan, 3], [7, 6]])

    print(data)

    return None

if __name__ == "__main__":
    im()
[[1. 2.]
 [4. 3.]
 [7. 6.]]
def var():
    """
    特征选择-删除低方差的特征
    :return: None
    """
    var = VarianceThreshold(threshold=1.0)

    data = var.fit_transform([[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]])

    print(data)
    return None

if __name__ == "__main__":
    var()
[[0]
 [4]
 [1]]
def pca():
    """
    主成分分析进行特征降维
    :return: None
    """
    pca = PCA(n_components=0.9)

    data = pca.fit_transform([[2,8,4,5],[6,3,0,8],[5,4,9,1]])

    print(data)

    return None


if __name__ == "__main__":
    pca()
[[ 1.22879107e-15  3.82970843e+00]
 [ 5.74456265e+00 -1.91485422e+00]
 [-5.74456265e+00 -1.91485422e+00]]
上一篇:learn regex


下一篇:scikit-learn安装步骤