最后一个题没时间整理了,直接放的std
改天再回来看。(希望能回来)
T1 link
solution
考虑每个数的贡献。
记录每个点需要参与传递的回合数,因为所有点每个回合的传递都是同时完成的,最后对所有点取 \(max\) 就是答案。
一个点 \(i\) 参与的回合有这么几种情况。
设最后的平均值为 \(rev\)
- \(\sum_{j = 1}^{j = i - 1}a_j < rev \times (i - 1) ~\&\& \sum_{j = i + 1}^{j = n}a_j < rev \times (n - i)\)
\(i\) 点要向两边传递,答案就是向两边传递求和。
其他的情况:两边向中间传,从左到右传,从右到左;都是取 \(\max\),因为这些操作都是一步完成的。
code
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN = 1e5 + 5;
int read() {
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
return x * f;
}
int n, a[MAXN], sum[MAXN], Ans, rev;
signed main() {
n = read();
for (int i = 1; i <= n; i++) a[i] = read(), sum[i] = sum[i - 1] + a[i];
rev = sum[n] / n;
for (int i = 1; i <= n; i++) {
int l = sum[i - 1] - rev * (i - 1), r = (sum[n] - sum[i]) - rev * (n - i);
if(l < 0 && r < 0) Ans = max(Ans, -l - r);
else Ans = max(Ans, max(abs(l), abs(r)));
}
cout<<Ans;
return 0;
}
T2 pigeon
solution
所有数的顺序并不影响,按照所有数从小到大排序后可以转化为取倍数问题,设 \(f_i\) 表示最后所取得数是 \(i\) 的最大价值,转移就枚举上一个取得数就好了,用埃氏筛思路可以做到 \(O(nlogn)\)
code
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int MAXN = 1e6 + 5;
int read() {
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
return x * f;
}
int f[MAXN], cnt[MAXN], Ans, n;
signed main() {
n = read();
for (int i = 1; i <= n; i++) {
int x = read();
cnt[x]++, f[x]++;
}
for (int i = 1; i <= 1000000; i++) {
if(cnt[i]) Ans = max(Ans, f[i]);
for (int j = i + i; j <= 1000000; j += i) if(cnt[i]) f[j] = max(f[j], f[i] + cnt[j]);
}
cout<<Ans;
return 0;
}
T3
solution
二分答案。
每次检验的时候会发现,一组卡牌中的一张选了会导致其他某组卡牌必须选另外一张,从而转化为 2-SAT 问题。
对于 所有卡牌战斗力的最大值减去最小值小于等于 100 的部分分,输出 0。
由于数据范围过大,无法直接 2-SAT 建图,注意到所有的边都是在一个区间里面的边,所以用线段树优化建图。
code
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
const int BUF_SIZE = 30;
char buf[BUF_SIZE], *buf_s = buf, *buf_t = buf + 1;
#define PTR_NEXT() \
{ \
buf_s ++; \
if (buf_s == buf_t) \
{ \
buf_s = buf; \
buf_t = buf + fread(buf, 1, BUF_SIZE, stdin); \
} \
}
#define readint(_n_) \
{ \
while (*buf_s != '-' && !isdigit(*buf_s)) \
PTR_NEXT(); \
bool register _nega_ = false; \
if (*buf_s == '-') \
{ \
_nega_ = true; \
PTR_NEXT(); \
} \
int register _x_ = 0; \
while (isdigit(*buf_s)) \
{ \
_x_ = _x_ * 10 + *buf_s - '0'; \
PTR_NEXT(); \
} \
if (_nega_) \
_x_ = -_x_; \
(_n_) = (_x_); \
}
#define readstr(_s_) \
{ \
while (!isupper(*buf_s)) \
PTR_NEXT(); \
char register *_ptr_ = (_s_); \
while (isupper(*buf_s) || *buf_s == '-') \
{ \
*(_ptr_ ++) = *buf_s; \
PTR_NEXT(); \
} \
(*_ptr_) = '\0'; \
}
#define readlonglong(_n_) \
{ \
while (*buf_s != '-' && !isdigit(*buf_s)) \
PTR_NEXT(); \
bool register _nega_ = false; \
if (*buf_s == '-') \
{ \
_nega_ = true; \
PTR_NEXT(); \
} \
long long register _x_ = 0; \
while (isdigit(*buf_s)) \
{ \
_x_ = _x_ * 10 + *buf_s - '0'; \
PTR_NEXT(); \
} \
if (_nega_) \
_x_ = -_x_; \
(_n_) = (_x_); \
}
#define wmt 1,(n<<1),1
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int maxn=200010;
const int maxp=maxn+(maxn<<2);
const int maxm=maxn+maxp+maxn*40;
int n,size,cnt,en,t,dfn[maxp],low[maxp],s[maxp],belong[maxp],pos[maxn];
bool instack[maxp];
struct edge
{
int e;
edge *next;
}*v[maxp],ed[maxm];
void add_edge(int s,int e)
{
en++;
ed[en].next=v[s];v[s]=ed+en;v[s]->e=e;
}
struct rec
{
int v,p;
rec(){}
rec(int a,int b)
{
v=a;p=b;
}
}z[maxn];
bool operator<(const rec &a,const rec &b)
{
return a.v<b.v;
}
void dfs(int p)
{
t++;
dfn[p]=low[p]=t;
instack[p]=true;
s[++size]=p;
for (edge *e=v[p];e;e=e->next)
if (!dfn[e->e])
{
dfs(e->e);
low[p]=min(low[p],low[e->e]);
}
else
{
if (instack[e->e]) low[p]=min(low[p],dfn[e->e]);
}
if (dfn[p]==low[p])
{
cnt++;
while (s[size]!=p)
{
belong[s[size]]=cnt;
instack[s[size]]=false;
size--;
}
belong[p]=cnt;
instack[p]=false;
size--;
}
}
void build(int l,int r,int rt)
{
if (l==r)
{
add_edge(rt+(n<<1),z[l].p<=n?z[l].p+n:z[l].p-n);
return;
}
int m=(l+r)>>1;
build(lson);
build(rson);
add_edge(rt+(n<<1),(rt<<1)+(n<<1));
add_edge(rt+(n<<1),(rt<<1|1)+(n<<1));
}
void insert(int l,int r,int rt,int nowl,int nowr,int p)
{
if (nowl<=l && r<=nowr)
{
add_edge(p,rt+(n<<1));
return;
}
int m=(l+r)>>1;
if (nowl<=m) insert(lson,nowl,nowr,p);
if (m<nowr) insert(rson,nowl,nowr,p);
}
bool check(int k)
{
en=0;cnt=0;
memset(v,0,sizeof(v));
memset(dfn,0,sizeof(dfn));
build(wmt);
int r=1,l=1;
for (int a=1;a<=(n<<1);a++)
{
int op,p=z[a].p;
if (p<=n) op=pos[p+n];
else op=pos[p-n];
while (r<=a && z[r].v <= z[a].v-k)
r++;
if (r<a && r>=1 && z[r].v > z[a].v-k)
{
if (op>=r && op<=a-1)
{
if (op>r) insert(wmt,r,op-1,z[a].p);
if (op<a-1) insert(wmt,op+1,a-1,z[a].p);
}
else insert(wmt,r,a-1,z[a].p);
}
while (l<=(n<<1) && z[l].v < z[a].v+k)
l++;
l--;
if (l>a && l<=(n<<1) && z[l].v < z[a].v+k)
{
if (op>=a+1 && op<=l)
{
if (op>a+1) insert(wmt,a+1,op-1,z[a].p);
if (op<l) insert(wmt,op+1,l,z[a].p);
}
else insert(wmt,a+1,l,z[a].p);
}
}
for (int a=1;a<=(n<<1);a++)
if (!dfn[a]) dfs(a);
for (int a=1;a<=n;a++)
if (belong[a]==belong[a+n]) return false;
return true;
}
int main()
{
readint(n);
int minv=0x3f3f3f3f,maxv=-0x3f3f3f3f;
int x=0;
for (int a=1;a<=n;a++)
{
int v1,v2;
readint(v1);
readint(v2);
z[++x]=rec(v1,a);
z[++x]=rec(v2,a+n);
minv=min(minv,min(v1,v2));
maxv=max(maxv,max(v1,v2));
}
if (maxv-minv+1 < n)
{
printf("0\n");
return 0;
}
sort(z+1,z+x+1);
for (int a=1;a<=(n<<1);a++)
pos[z[a].p]=a;
int l=0,r=1000000001;
while (l+1!=r)
{
int m=(l+r)>>1;
if (check(m)) l=m;
else r=m;
}
printf("%d\n",l);
return 0;
}