Caffe中deploy.prototxt 和 train_val.prototxt 区别

之前用deploy.prototxt 还原train_val.prototxt过程中,遇到了坑,所以打算总结一下

本人以熟悉的LeNet网络结构为例子

不同点主要在一前一后,相同点都在中间

train_val.prototxt 中的开头

看这个名字也知道,里面定义的是训练和验证时候的网络,所以在开始的时候要定义训练集和验证集的来源

name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
# 这里定义了之前将数据集转成lmdb数据格式的文件位置
source: "examples/mnist/mnist_train_lmdb"
# 这个定义了一次行送入网络的图像个数
batch_size: 64
backend: LMDB
}
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
# 这里定义了验证集的数据来源
source: "examples/mnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}

  

deploy.prototxt 中的开头

看这个名字也知道,这个配置文件适用于部署,也就是用于实际场景时候的配置文件,所以开始的时候不必在定义数据集的来源,但是需要定义输入数据的大小格式。

name: "LeNet"
layer {
name: "data"
type: "Input"
top: "data"
# 输入数据的batch size, channel, width, height
input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }
}

  

train_val.prototxt 中的结尾

如果是一般的卷积网络的话,最后面都是用一个全连接,将feature map 转成固定长度的向量,然后输出种类的个数。所以在最后的时候,需要说明输出种类的个数。

layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
# 在这里定义了输出种类的个数
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}

  

因为这里面包含了验证的部分,验证的时候,需要输出结果的准确率,所以需要定义准确率的输出。

layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}

  

最后还有一个不同就是,因为是训练模型,所以包括forward和backward,所以最后需要定义一个损失函数。这里用的是SoftmaxWithLoss,而在deploy.prototxt,因为只有forward,所以定义的是Softmax,也就是分类器。

layer {
name: "loss"
# 定义的是损失函数
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}

  

deploy.prototxt 中的最后

这里定义了Softmax分类器,输出最后各类的概率值。

layer {
name: "prob"
# 定义的是分类器
type: "Softmax"
bottom: "ip2"
top: "prob"
}

  

train_val.prototxt 和 deploy.prototxt中间部分

两个的中间部分都是一样的,定义了一些卷积、激活、池化、Dropout、LRN(local response normalization)、全连接等操作。

layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}

  

上一篇:Cocos Creator—如何给资源打MD5版本号


下一篇:[LeetCode] Combination Sum 回溯