How far away ? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others)
Total Submission(s): Accepted Submission(s): Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people. Input
First line is a single integer T(T<=), indicating the number of test cases.
For each test case,in the first line there are two numbers n(<=n<=) and m (<=m<=),the number of houses and the number of queries. The following n- lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(<k<=).The houses are labeled from to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j. Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case. Sample Input Sample Output
LCA在线ST:对一颗有根树进行DFS搜索,无论递归还是回溯,每次到达一个节点都将节点的编号记录下来,这样就得到了一条长度为2*n-1的欧拉序列,这样在序列中,从u到v
一定会有u,v的祖先,而不会有u,v祖先节点的祖先,而且u,v之间深度最小的节点就是LCA(u,v),再使用ST算法求RMQ,这样每次查询的时间就能达到O(1)
#include <iostream>
#include <cstdio>
#include <cstring>
#define scan(x) scanf("%d",&x)
#define scan2(x,y) scanf("%d%d",&x,&y)
#define scan3(x,y,z) scanf("%d%d%d",&x,&y,&z)
using namespace std;
const int Max=;
const int E=*;
int head[Max],nex[E],pnt[E],cost[E],edge;
int vex[Max<<],R[Max<<],vis[Max],dis[Max],first[Max],tot;
//!!vex R 长度要Max*2,因为算法特性会生成顶点数两倍的序列
int n;
void Addedge(int u,int v,int c)
{
pnt[edge]=v;cost[edge]=c;
nex[edge]=head[u];head[u]=edge++;
}
void dfs(int u,int deep)
{
vis[u]=;
vex[++tot]=u; //以tot为编号的的节点
first[u]=tot; //u节点的编号为tot
R[tot]=deep; //tot编号节点的深度
for(int x=head[u];x!=-;x=nex[x])
{
int v=pnt[x],c=cost[x];
if(!vis[v])
{
dis[v]=dis[u]+c;
dfs(v,deep+);
vex[++tot]=u;
R[tot]=deep;
}
}
}
int dp[Max<<][];
//!!dp长度要Max*2,,因为算法特性会生成顶点数两倍的序列
void ST(int n) //n是2*n-1
{
int x,y;
for(int i=;i<=n;i++) dp[i][]=i;
for(int j=;(<<j)<=n;j++)
{
for(int i=;i+(<<j)-<=n;i++)
{
x=dp[i][j-];y=dp[i+(<<(j-))][j-];
dp[i][j]=(R[x]<R[y]?x:y);
}
}
}
int RMQ(int l,int r)
{
int k=,x,y;
while((<<(k+))<=r-l+) k++;
x=dp[l][k];y=dp[r-(<<k)+][k];
return (R[x]<R[y])?x:y;
}
int LCA(int u,int v)
{
int x=first[u],y=first[v];
if(x>y) swap(x,y);
int res=RMQ(x,y); //在u,v之间的最小深度节点即为lca
return vex[res];
}
void Init()
{
edge=;
memset(head,-,sizeof(head));
memset(nex,-,sizeof(nex));
memset(vis,,sizeof(vis));
}
int main()
{
int T,Q;
for(scan(T);T;T--)
{
Init();
int u,v,c;
scan2(n,Q);
for(int i=;i<n-;i++)
{
scan3(u,v,c);
Addedge(u,v,c);
Addedge(v,u,c);
}
tot=;dis[]=;
dfs(,);
ST(*n);
while(Q--)
{
scan2(u,v);
int lca=LCA(u,v);
printf("%d\n",dis[u]+dis[v]-*dis[lca]);
}
}
return ;
}