Codeforces 1111D Destroy the Colony 退背包 (看题解)

第一次知道这种背包还能退的。。。。

我们用dp[ i ]表示选取若干个物品重量到达 i 的方案数。

如果我们g[ i ]表示不用第 x 个物品的, 然后选若干其他的物品到达 i 的方案数。

if(i < cnt[ x ]) g[ i ] = dp[ i ]

else  g[ i ] = dp[ i ] - g[ i - cnt[ x ] ]

这样退一次就能删一个物品, 这个题目退两次就可以了。

一共只有52 × 52 / 2个本质不同的询问, 预处理一下。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ;
const double eps = 1e-;
const double PI = acos(-); int n, m, q, way, c[];
int dp[N], f[N], g[N], ans[][];
char s[N];
int F[N], Finv[N], inv[N]; int getPos(char x) {
if(islower(x)) return x - 'a';
else return x - 'A' + ;
} void add(int &a, int b) {
a += b; if(a >= mod) a -= mod;
} void init() {
inv[] = F[] = Finv[] = ;
for(int i = ; i < N; i++) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < N; i++) F[i] = 1ll * F[i - ] * i % mod;
for(int i = ; i < N; i++) Finv[i] = 1ll * Finv[i - ] * inv[i] % mod;
} int main() {
init();
scanf("%s", s + );
n = strlen(s + );
for(int i = ; i <= n; i++)
c[getPos(s[i])]++;
m = n / ;
way = 1ll * F[m] * F[m] % mod;
for(int i = ; i < ; i++)
way = 1ll * way * Finv[c[i]] % mod;
dp[] = ;
for(int i = ; i < ; i++) {
if(!c[i]) continue;
for(int j = n - c[i]; j >= ; j--)
add(dp[j + c[i]], dp[j]);
}
for(int u = ; u < ; u++) {
for(int v = u + ; v < ; v++) {
if(!c[u] || !c[v]) continue;
for(int i = ; i <= n; i++) {
if(i < c[u]) f[i] = dp[i];
else {
f[i] = dp[i] - f[i - c[u]];
if(f[i] < ) f[i] += mod;
}
if(i < c[v]) g[i] = f[i];
else {
g[i] = f[i] - g[i - c[v]];
if(g[i] < ) g[i] += mod;
}
}
ans[u][v] = * g[m] % mod;
}
}
scanf("%d", &q);
while(q--) {
int x, y; scanf("%d%d", &x, &y);
x = getPos(s[x]), y =getPos(s[y]);
if(x > y) swap(x, y);
if(x == y) {
printf("%d\n", 1ll * dp[m] * way % mod);
} else {
printf("%d\n", 1ll * ans[x][y] * way % mod);
}
}
return ;
} /*
*/
上一篇:valuestack,stackContext,ActionContext.之间的关系以及如何存取数值的


下一篇:JSP弹出窗口和模式对话框