introduction:
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
class Solution {
public:
vector<int> countBits(int num) {
vector<int> result;
if(num>=) // 1. not num==0
result.push_back();
if(num>=) // 1. not num==1
result.push_back();
for (int i=;i<=num;i++)
{
int k = (log(i)/log());
if(i>=pow(,k) && i<pow(,k)+pow(,k-)) // 2. use pow (in math.h)
result.push_back(result.at(i-pow(,k-)));
else if(i>=pow(,k)+pow(,k-) && i<pow(,k+)) // 3. >= or >
result.push_back(result.at(i-pow(,k-))+);
}
result;
}
};
解题思路:从 1 到15 ,它的1的个数可以在二叉树中看出(从左到右,从上到下,15=b1111为最后一个对应4)。
而且 满足 : 第k+1层的前半部分 是第k层的复制 , 后半部分是第k层所有元素加1
debug:
1、 如果 是 ==0 或者 ==1 作为判断,当>1 时,将会缺少0和1的pushback
2、 幂运算 result=pow(x,y);
3、 注意判断语句的边界条件
注: 本文原创,转载请说明出处