洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)

传送门

公式太长了……我就直接抄一下这位大佬好了……实在懒得打了

首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$

我们所求的答案为$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)$$

$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$

考虑一下$gcd(x,y)=1$,我们可以考虑莫比乌斯函数的性质,那么即$\sum_{d\mid n}\mu(d)$与$[n=1]$的结果相同

则有$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}\sum_{d|gcd(x,y)}\mu(d)$$

然后我们由枚举$gcd(x,y)$的约数改为直接枚举$d$

$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}\sum_{d=1}^{min(n,m)}\mu(d)*[d|gcd(x,y)]$$

然后把$\mu(d)$提取出来

$$ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[d|gcd(x,y)]$$

然后,我们把枚举$i,j$和约数改为直接枚举约数,然后每个约数都会对他所有的倍数产生贡献

$$ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{x=1}^{n}\sum_{y=1}^{m}[d|gcd(x,y)]\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor$$

然后我们把枚举$x,y$改为枚举$dx,dy$,那么就可以把$[d|gcd(x,y)]$这个条件给消掉

$$ans=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{{\lfloor\frac{m}{d}\rfloor}}\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dy}\rfloor$$

$$ans=\sum_{d=1}^{min(n,m)}\mu(d)(\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor)(\sum_{y=1}^{{\lfloor\frac{m}{d}\rfloor}}\lfloor\frac{m}{dy}\rfloor)$$

然后$\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor$和$\sum_{y=1}^{{\lfloor\frac{m}{d}\rfloor}}\lfloor\frac{m}{dy}\rfloor$的前缀和都可以预处理,直接上整除分块就可以了

 //minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
int vis[N],p[N],mu[N],sum[N],m;
ll g[N],ans;
void init(int n){
mu[]=;
for(int i=;i<=n;++i){
if(!vis[i]) p[++m]=i,mu[i]=-;
for(int j=;j<=m&&p[j]*i<=n;++j){
vis[i*p[j]]=;
if(i%p[j]==) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=;i<=n;++i) sum[i]=sum[i-]+mu[i];
for(int i=;i<=n;++i){
ans=;
for(int l=,r;l<=i;l=r+){
r=(i/(i/l));
ans+=1ll*(r-l+)*(i/l);
}
g[i]=ans;
}
}
int main(){
// freopen("testdata.in","r",stdin);
init();
int n,m,T,lim;scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
lim=min(n,m),ans=;
for(int l=,r;l<=lim;l=r+){
r=min(n/(n/l),m/(m/l));
ans+=(sum[r]-sum[l-])*g[n/l]*g[m/l];
}
printf("%lld\n",ans);
}
return ;
}
上一篇:洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】


下一篇:洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E