Spark入门(四)Idea远程提交项目到spark集群

一、依赖包配置

scala与spark的相关依赖包,spark包后尾下划线的版本数字要跟scala的版本第一二位要一致,即2.11

pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <groupId>com.mk</groupId>
  <artifactId>spark-test</artifactId>
  <version>1.0</version>

  <name>spark-test</name>
  <url>http://spark.mk.com</url>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
    <scala.version>2.11.1</scala.version>
    <spark.version>2.4.4</spark.version>
    <hadoop.version>2.6.0</hadoop.version>
  </properties>

  <dependencies>
    <!-- scala依赖-->
    <dependency>
      <groupId>org.scala-lang</groupId>
      <artifactId>scala-library</artifactId>
      <version>${scala.version}</version>
    </dependency>

    <!-- spark依赖-->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.11</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql_2.11</artifactId>
      <version>${spark.version}</version>
    </dependency>


    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.11</version>
      <scope>test</scope>
    </dependency>
  </dependencies>

  <build>
    <pluginManagement>
      <plugins>

        <plugin>
          <artifactId>maven-clean-plugin</artifactId>
          <version>3.1.0</version>
        </plugin>

        <plugin>
          <artifactId>maven-resources-plugin</artifactId>
          <version>3.0.2</version>
        </plugin>
        <plugin>
          <artifactId>maven-compiler-plugin</artifactId>
          <version>3.8.0</version>
        </plugin>
        <plugin>
          <artifactId>maven-surefire-plugin</artifactId>
          <version>2.22.1</version>
        </plugin>
        <plugin>
          <artifactId>maven-jar-plugin</artifactId>
          <version>3.0.2</version>
        </plugin>
      </plugins>
    </pluginManagement>
  </build>
</project>

 

二、PI例子

java重新编写scala的PI例子

package com.mk;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SparkSession;

import java.util.ArrayList;
import java.util.List;



public class App 
{
    public static void main( String[] args )
    {


        SparkConf sparkConf = new SparkConf();
        if(System.getProperty("os.name").toLowerCase().contains("win")) {
//            sparkConf.setMaster("local[2]");
//            System.out.println("使用本地模拟是spark");
//        }else
//            {
            sparkConf.setMaster("spark://hadoop01:7077,hadoop02:7077,hadoop03:7077");
            sparkConf.set("spark.driver.host","192.168.10.126");//本地ip,必须与spark集群能够相互访问,如:同一个局域网
            sparkConf.setJars(new String[] {".\\out\\artifacts\\spark_test\\spark-test.jar"});//项目构建生成的路径
        }
        SparkSession session = SparkSession.builder().appName("Pi").config(sparkConf).config(sparkConf).getOrCreate();
        int slices =2;
        int n = (int)Math.min(100_000L * slices, Integer.MAX_VALUE);
        JavaSparkContext sparkContext = new JavaSparkContext(session.sparkContext());

        List<Integer> list = new ArrayList<>(n);
        for (int i = 0; i < n; i++)
            list.add(i + 1);
        int count  = sparkContext.parallelize(list, slices).
                map(v -> {
                    double x = Math.random() * 2 - 1;
                    double y = Math.random() * 2 - 1;
                    if (x * x + y * y < 1)
                        return 1;
                    return 0;
                }).reduce((Integer a, Integer b) ->a+b);
         System.out.println("PI:"+  4.0 * count / n);
        session.stop();

    }
}

 

三、直接在idea本地运行

输出PI

Spark入门(四)Idea远程提交项目到spark集群

 

 

四、局限性

注意:项目机器的本地ip,必须与spark集群能够相互访问,如:同一个局域网。

不在同一个网络提交失败,任务一直重试无法退出

Spark入门(四)Idea远程提交项目到spark集群Spark入门(四)Idea远程提交项目到spark集群 茅坤宝骏氹 发布了359 篇原创文章 · 获赞 523 · 访问量 128万+ 他的留言板 关注
上一篇:文章 切分 累加单词出现次数


下一篇:sample