1072: [SCOI2007]排列perm
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 2488 Solved: 1546
[Submit][Status][Discuss]
Description
给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0)。例如123434有90种排列能
被2整除,其中末位为2的有30种,末位为4的有60种。
Input
输入第一行是一个整数T,表示测试数据的个数,以下每行一组s和d,中间用空格隔开。s保证只包含数字0, 1
, 2, 3, 4, 5, 6, 7, 8, 9.
Output
每个数据仅一行,表示能被d整除的排列的个数。
Sample Input
7
000 1
001 1
1234567890 1
123434 2
1234 7
12345 17
12345678 29
000 1
001 1
1234567890 1
123434 2
1234 7
12345 17
12345678 29
Sample Output
1
3
3628800
90
3
6
1398
3
3628800
90
3
6
1398
HINT
在前三个例子中,排列分别有1, 3, 3628800种,它们都是1的倍数。
【限制】
100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int bin[];
int T,d,len;
int a[],v[],tot[],f[][];
char ch[];
void dp()
{
for(int i=;i<bin[len];i++)
for(int k=;k<d;k++) f[i][k]=;
f[][]=;
for(int i=;i<bin[len];i++)
for(int k=;k<d;k++)
if(f[i][k])
for(int x=;x<=len;x++)
if((bin[x-]&i)==) f[i|bin[x-]][(a[x]+k*)%d]+=f[i][k];
}
int main()
{
bin[]=;
for(int i=;i<;i++)bin[i]=bin[i-]<<;
T=read();
while(T--)
{
scanf("%s",ch+);
d=read();
len=strlen(ch+);
for(int i=;i<=;i++)v[i]=,tot[i]=;
for(int i=;i<=len;i++)
{
a[i]=ch[i]-'';
v[a[i]]*=(++tot[a[i]]);
}
dp();
for(int i=;i<=;i++)f[bin[len]-][]/=v[i];
printf("%d\n",f[bin[len]-][]);
}
return ;
}