Python 练习册

01:将你的 QQ 头像(或者微博头像)右上角加上红色的数字,类似于微信未读信息数量那种提示效果

【图像处理】

类似于图中效果:

Python 练习册

py 2.7代码:

from PIL import Image, ImageDraw, ImageFont
def add_word(img):
char_size = 30
fillcolor = "#ff0000"
draw = ImageDraw.Draw(img)
my_font = ImageFont.truetype(r'C:\Windows\Fonts\SIMYOU.TTF', char_size)#从本地载入字体文件
width, height = img.size
draw.text((width - char_size,char_size-20), '', font=my_font, fill=fillcolor)
img.save('result.jpg','JPEG')
del draw if __name__ == "__main__":
img = Image.open('test.jpg')
add_word(img)

更多:

draw.line((0, 0) + im.size, fill=128)  #画一道线

参考文档:

pillow 函数接口查询 官方文档


02:任一个英文的纯文本文件,统计其中的单词出现的个数【文本处理】

import re

def statis_words(article):
re_pat = re.compile("\W",re.S)
pre_article = re.sub(re_pat," ",article)
re_pat2 = re.compile(" *",re.S)
list_words = re_pat2.split(pre_article)
dict_re = dict.fromkeys(list_words)
for i in list_words:
if not dict_re[i]:
dict_re[i] = 0
if i in list_words:
dict_re[i]+=1
for i in dict_re.iteritems():#打印
print i if __name__ == "__main__":
file_path = "words.txt"
article = ""
with open(file_path) as f:
for i in f.readlines():
article += i
statis_words(article.replace("\n",' '))

03:你有一个目录,装了很多照片,把它们的尺寸变成都不大于 iPhone5 分辨率的大小【图像处理】

import os
from PIL import Image iPhone5_WIDTH = 1136
iPhone5_HEIGHT = 640 def resize_iPhone5_pic(path, new_path, width=iPhone5_WIDTH, height=iPhone5_HEIGHT):
im = Image.open(path)
w,h = im.size if w > width:
h = width * h // w
w = width
if h > height:
w = height * w // h
h = height im_resized = im.resize((w,h), Image.ANTIALIAS)
im_resized.save(new_path) def walk_dir_and_resize(path):
for root, dirs, files in os.walk(path):#递归path下所有目录
for f_name in files:
if f_name.lower().endswith('jpg'):
path_dst = os.path.join(root,f_name)
f_new_name = 'iPhone5_' + f_name
resize_iPhone5_pic(path=path_dst, new_path=f_new_name) if __name__ == '__main__':
walk_dir_and_resize('./')#当前目录

核心函数  image.resize()

Image.resize(sizeresample=0)

Returns a resized copy of this image.

Parameters:
  • size – The requested size in pixels, as a 2-tuple: (width, height).
  • resample – An optional resampling filter. This can be one of PIL.Image.NEAREST (use nearest neighbour), PIL.Image.BILINEAR (linear interpolation), PIL.Image.BICUBIC(cubic spline interpolation), or PIL.Image.LANCZOS (a high-quality downsampling filter). If omitted, or if the image has mode “1” or “P”, it is set PIL.Image.NEAREST.
Returns:

An Image object.

size: 图像宽度,长度

resample:

PIL.Image.NEAREST (use nearest neighbour)   最近邻插值法

PIL.Image.BILINEAR (linear interpolation),   双线性插值法

PIL.Image.BICUBIC(cubic spline interpolation), 双三次插值

or PIL.Image.LANCZOS (a high-quality downsampling filter)   Lanczos算法  采样放缩算法

缩小时 ANTIALIAS

更多图像处理请参考 opencv

reference:Image Module


04:你有一个目录,放了你一个月的日记,都是 txt,为了避免分词的问题,假设内容都是英文,请统计出你认为每篇日记最重要的词【字符串处理】【文件管理】

注:暂认为出现频率最多的为最重要的

#文件管理
#coding:utf-8
import os
import re def analyse_article(article):
re_pat = re.compile("(?=[\n\x21-\x7e]+)[^A-Za-z0-9]")#+|[{}【】。,;“‘”?]")#("^([\u4e00-\u9fa5]+|[a-zA-Z0-9]+)$")#("(?=[\x21-\x7e]+)[^A-Za-z0-9]+|["{}【】。,;’“‘”?"]")#("[\W\u4e00-\u9fa5] ",re.S) \s 空格符
pre_article = re.sub(re_pat," ",article)
chinese_symbol = ["\xa1\xa3","\xa1\xb0","\xa1\xb1","\xa3\xac","\xa1\xbe","\xa1\xbf","\xa1\xb6","\xa1\xb7","\xa3\xba","\xa3\xbb"]#中文标点
for i in chinese_symbol:
pre_article = pre_article.replace(i," ")
re_pat2 = re.compile(" *",re.S)
list_words = re_pat2.split(pre_article)
dict_re = dict.fromkeys(list_words)
#print pre_article
for i in list_words:
if not dict_re[i]:
dict_re[i] = 0
if i in list_words:
dict_re[i]+=1
if dict_re.get(""):
del dict_re[""]
key_words = sorted(dict_re.items(),key = lambda e:e[1])[-1]
return (key_words[0], key_words[1]) def walk_dir_and_analyse(path):
text = ""
key_words_list = []
for root, dirs, files in os.walk(path):#递归path下所有目录
for f_name in files:
if f_name.lower().endswith('txt'):
with open(os.path.join(root,f_name)) as f:
for i in f.readlines():
text += i
key_words_list.append(analyse_article(text)) for i in key_words_list:
print "\""+ i[0] + "\" for "+ str(i[1]) +" times" if __name__ == "__main__":
walk_dir_and_analyse("./")

输出

>python 4.py
"春眠不觉晓" for 2 times


05:敏感词文本文件 filtered_words.txt,当用户输入敏感词语,则用星号 * 替换,例如当用户输入「北京是个好城市」,则变成「**是个好城市」。

#[字符串处理]
#敏感词文本文件 filtered_words.txt,
#里面的内容为以下内容,当用户输入敏感词语时,
#python ' '中将自动加入结尾符号,要注意字串实际长度,包括读入txt文件时的字符串长度
#coding:utf-8 def words_filter(path,words_list):
content = ""
with open(path) as f:
for i in f.readlines():
for j in words_list:
if j in i:
i = i.replace(j,"*"*(len(j)/(len('单')-1))) #一个中文两个字节长度
content += i
return content if __name__ == "__main__":
word_path = "filtered_words.txt"
path = "words.txt" words_list = []
with open(word_path) as f:
for i in f.readlines():
words_list.append(i.replace("\n",""))
print words_filter(path,words_list)
上一篇:[转]在Linux CentOS 6.6上安装Python 2.7.9


下一篇:CentOS 6.5上安装MySQL-Cluster