standalone 模式的高可用
部署
flink 使用zookeeper协调多个运行的jobmanager,所以要启用flink HA 你需要把高可用模式设置成zookeeper
,配置zookeeper相关参数,并且在masters配置文件中配置所有的jobmanager主机地址和web UI 端口
在一下例子中,我们配置node1,node2,node3三个jobmanager
-
编辑
conf/masters
node1:8081
node2:8081
node3:8081 -
编辑
conf/flink-conf.yaml
high-availability: zookeeper
high-availability.zookeeper.quorum: node1:2181,node2:2181,node3:2181
high-availability.zookeeper.path.root: /flink
high-availability.cluster-id: /cluster_one high-availability.storageDir: hdfs:///flink/recovery -
启动集群
bin/start-cluster.sh
yarn 模式的高可用
yarn 模式中不会同时运行多个jobmanager(ApplicationMaster) instances,而是只运行一个,如果ApplicationMaster异常会依靠Yarn机制进行重启.
部署
-
编辑
yarn-site.xml
添加如下配置<property>
<name>yarn.resourcemanager.am.max-attempts</name>
<value>4</value>
<description>
The maximum number of application master execution attempts.
</description>
</property>设置application master 最大重启次数
-
编辑
conf/flink-conf.yaml
high-availability: zookeeper
high-availability.zookeeper.quorum: node1:2181,node2:2181,node3:2181
high-availability.storageDir: hdfs:///flink/recovery
high-availability.zookeeper.path.root: /flink
yarn.application-attempts: 10配置HA模式为
zookeeper
,并设置应用的最大重启次数 -
启动一个yarn session
bin/yarn-session.sh -n 2
原理
采用curator
库中的LeaderLatch
实现leader选举。不了解的同学可以移步curator相关文档LeaderLatch
在zookeeper中生成的主要目录结构如下图:
涉及到的主要类:
-
选举:
首先我们看一下
JobManager
的构造函数:注意它的构造函数需要
LeaderElectionService
对象作为参数以及它本身实现了LeaderContender
接口。那么LeaderElectionService
是怎么创建的?其实就是根据high-availability: zookeeper
此配置项,由HighAvailabilityServicesUtils
工具类的createAvailableOrEmbeddedServices
方法创建HighAvailabilityServices
对象然后通过其getJobManagerLeaderElectionService
方法创建:public static HighAvailabilityServices createAvailableOrEmbeddedServices(
Configuration config,
Executor executor) throws Exception {
HighAvailabilityMode highAvailabilityMode = LeaderRetrievalUtils.getRecoveryMode(config); switch (highAvailabilityMode) {
case NONE:
return new EmbeddedHaServices(executor); case ZOOKEEPER:
BlobStoreService blobStoreService = BlobUtils.createBlobStoreFromConfig(config); return new ZooKeeperHaServices(
ZooKeeperUtils.startCuratorFramework(config),
executor,
config,
blobStoreService); default:
throw new Exception("High availability mode " + highAvailabilityMode + " is not supported.");
}
}
```java
public static ZooKeeperLeaderElectionService createLeaderElectionService(
final CuratorFramework client,
final Configuration configuration,
final String pathSuffix)
{
final String latchPath = configuration.getString(
HighAvailabilityOptions.HA_ZOOKEEPER_LATCH_PATH) + pathSuffix;
final String leaderPath = configuration.getString(
HighAvailabilityOptions.HA_ZOOKEEPER_LEADER_PATH) + pathSuffix;
return new ZooKeeperLeaderElectionService(client, latchPath, leaderPath);
}
我们再了解一下`ZooKeeperLeaderElectionService`
![](https://img2018.cnblogs.com/blog/413838/201810/413838-20181008220134231-1838364581.png)
以及`LeaderContender`
![](https://img2018.cnblogs.com/blog/413838/201810/413838-20181008220233351-1437582454.png)
`ZooKeeperLeaderElectionService`类主要管理`namespace`下的两个路径,即`latchPath`(/leaderlatch)和`leaderPath(/leader)`,`latchPath`用来进行leader选举,`leaderPath`存储选举出的leader的地址和UUID。
`LeaderContender`类用于当leader发生改变时,收到相应的通知以进行相关业务处理。比如:自己变成leader时,进行job恢复;当自己被撤销leader时,断开注册的TaskManager。
在`JobManager`的`preStart`方法中会调用`ZooKeeperLeaderElectionService`的`start`方法注册`LeaderLatch`(/leaderlatch)和`NodeCache`(/leader)的监听器。如果某个`LeaderLatch`被选为leader,则对应的`ZooKeeperLeaderElectionService`对象的`isLeader`方法会被回调,从而调用`LeaderContender->grantLeadership()`通知被选中的竞选者(此处为JobManager),然后`JobManager`会调用`LeaderElectionService->confirmLeaderSessionID()`把被选中的leader的相关信息写入到`/leader`目录下,并异步进行job恢复工作。
NodeCache
(/leader)的监听器监听写入数据的变化,并具备纠错功能。
```java
public void isLeader() {
synchronized (lock) {
if (running) {
issuedLeaderSessionID = UUID.randomUUID();
confirmedLeaderSessionID = null;
if (LOG.isDebugEnabled()) {
LOG.debug(
"Grant leadership to contender {} with session ID {}.",
leaderContender.getAddress(),
issuedLeaderSessionID);
}
leaderContender.grantLeadership(issuedLeaderSessionID);
} else {
LOG.debug("Ignoring the grant leadership notification since the service has " +
"already been stopped.");
}
}
}
leader重新选举后需要恢复提交的Job以及恢复相应job的checkpoint。 这就涉及到`JobManager`构造函数图示中圈红的`SubmittedJobGraphStore`和`CheckpointRecoveryFactory`这两个类,我们后边专门进行详细讲解。
* 查询:
![](https://img2018.cnblogs.com/blog/413838/201810/413838-20181008220442621-548390073.png)
`ZooKeeperLeaderRetrievalService`通过监听`/flink/{cluster_id}/leader/{default_jobid}/job_manager_lock`目录的变化,读取该目录下的数据然后通过`LeaderRetrievalListener`的`notifyLeaderAddress`方法通知实现该接口的对象。比如更新`FlinkMiniCluster`的`leaderGateway`