Sample: cppOverload
Minimum spec: SM 3.0
This sample demonstrates how to use C++ function overloading on the GPU.
Key concepts:
C++ Function Overloading
CUDA Streams and Events
cppOverload_kernel.cuh
__global__ void simple_kernel(const int *pIn, int *pOut, int a)
{
__shared__ int sData[THREAD_N];
int tid = threadIdx.x + blockDim.x*blockIdx.x;
sData[threadIdx.x] = pIn[tid];
__syncthreads();
pOut[tid] = sData[threadIdx.x]*a + tid;;
}
__global__ void simple_kernel(const int2 *pIn, int *pOut, int a)
{
__shared__ int2 sData[THREAD_N];
int tid = threadIdx.x + blockDim.x*blockIdx.x;
sData[threadIdx.x] = pIn[tid];
__syncthreads();
pOut[tid] = (sData[threadIdx.x].x + sData[threadIdx.x].y)*a + tid;;
}
__global__ void simple_kernel(const int *pIn1, const int *pIn2, int *pOut, int a)
{
__shared__ int sData1[THREAD_N];
__shared__ int sData2[THREAD_N];
int tid = threadIdx.x + blockDim.x*blockIdx.x;
sData1[threadIdx.x] = pIn1[tid];
sData2[threadIdx.x] = pIn2[tid];
__syncthreads();
pOut[tid] = (sData1[threadIdx.x] + sData2[threadIdx.x])*a + tid;
}
cppOverload.cu
/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
#define THREAD_N 256
#define N 1024
#define DIV_UP(a, b) (((a) + (b) - 1) / (b))
// Includes, system
#include <stdio.h>
#include <helper_cuda.h>
#include <helper_string.h>
#include <helper_math.h>
#include "cppOverload_kernel.cuh"
const char *sampleName = "C++ Function Overloading";
#define OUTPUT_ATTR(attr) \
printf("Shared Size: %d\n", (int)attr.sharedSizeBytes); \
printf("Constant Size: %d\n", (int)attr.constSizeBytes); \
printf("Local Size: %d\n", (int)attr.localSizeBytes); \
printf("Max Threads Per Block: %d\n", attr.maxThreadsPerBlock); \
printf("Number of Registers: %d\n", attr.numRegs); \
printf("PTX Version: %d\n", attr.ptxVersion); \
printf("Binary Version: %d\n", attr.binaryVersion); \
bool check_func1(int *hInput, int *hOutput, int a)
{
for (int i = 0; i < N; ++i)
{
int cpuRes = hInput[i]*a + i;
if (hOutput[i] != cpuRes)
{
return false;
}
}
return true;
}
bool check_func2(int2 *hInput, int *hOutput, int a)
{
for (int i = 0; i < N; i++)
{
int cpuRes = (hInput[i].x + hInput[i].y)*a + i;
if (hOutput[i] != cpuRes)
{
return false;
}
}
return true;
}
bool check_func3(int *hInput1, int *hInput2, int *hOutput, int a)
{
for (int i = 0; i < N; i++)
{
if (hOutput[i] != (hInput1[i] + hInput2[i])*a + i)
{
return false;
}
}
return true;
}
int main(int argc, const char *argv[])
{
int *hInput = NULL;
int *hOutput = NULL;
int *dInput = NULL;
int *dOutput = NULL;
printf("%s starting...\n", sampleName);
int deviceCount;
checkCudaErrors(cudaGetDeviceCount(&deviceCount));
printf("DevicecheckCudaErrors Count: %d\n", deviceCount);
int deviceID = findCudaDevice(argc, argv);
cudaDeviceProp prop;
checkCudaErrors(cudaGetDeviceProperties(&prop, deviceID));
if (prop.major < 2)
{
printf("ERROR: cppOverload requires GPU devices with compute SM 2.0 or higher.\n");
printf("Current GPU device has compute SM%d.%d, Exiting...", prop.major, prop.minor);
exit(EXIT_WAIVED);
}
checkCudaErrors(cudaSetDevice(deviceID));
// Allocate device memory
checkCudaErrors(cudaMalloc(&dInput , sizeof(int)*N*2));
checkCudaErrors(cudaMalloc(&dOutput, sizeof(int)*N));
// Allocate host memory
checkCudaErrors(cudaMallocHost(&hInput , sizeof(int)*N*2));
checkCudaErrors(cudaMallocHost(&hOutput, sizeof(int)*N));
for (int i = 0; i < N*2; i++)
{
hInput[i] = i;
}
// Copy data from host to device
checkCudaErrors(cudaMemcpy(dInput, hInput, sizeof(int)*N*2, cudaMemcpyHostToDevice));
// Test C++ overloading
bool testResult = true;
bool funcResult = true;
int a = 1;
void (*func1)(const int *, int *, int);
void (*func2)(const int2 *, int *, int);
void (*func3)(const int *, const int *, int *, int);
struct cudaFuncAttributes attr;
// overload function 1
func1 = simple_kernel;
memset(&attr, 0, sizeof(attr));
checkCudaErrors(cudaFuncSetCacheConfig(*func1, cudaFuncCachePreferShared));
checkCudaErrors(cudaFuncGetAttributes(&attr, *func1));
OUTPUT_ATTR(attr);
(*func1)<<<DIV_UP(N, THREAD_N), THREAD_N>>>(dInput, dOutput, a);
checkCudaErrors(cudaMemcpy(hOutput, dOutput, sizeof(int)*N, cudaMemcpyDeviceToHost));
funcResult = check_func1(hInput, hOutput, a);
printf("simple_kernel(const int *pIn, int *pOut, int a) %s\n\n", funcResult ? "PASSED" : "FAILED");
testResult &= funcResult;
// overload function 2
func2 = simple_kernel;
memset(&attr, 0, sizeof(attr));
checkCudaErrors(cudaFuncSetCacheConfig(*func2, cudaFuncCachePreferShared));
checkCudaErrors(cudaFuncGetAttributes(&attr, *func2));
OUTPUT_ATTR(attr);
(*func2)<<<DIV_UP(N, THREAD_N), THREAD_N>>>((int2 *)dInput, dOutput, a);
checkCudaErrors(cudaMemcpy(hOutput, dOutput, sizeof(int)*N, cudaMemcpyDeviceToHost));
funcResult = check_func2(reinterpret_cast<int2 *>(hInput), hOutput, a);
printf("simple_kernel(const int2 *pIn, int *pOut, int a) %s\n\n", funcResult ? "PASSED" : "FAILED");
testResult &= funcResult;
// overload function 3
func3 = simple_kernel;
memset(&attr, 0, sizeof(attr));
checkCudaErrors(cudaFuncSetCacheConfig(*func3, cudaFuncCachePreferShared));
checkCudaErrors(cudaFuncGetAttributes(&attr, *func3));
OUTPUT_ATTR(attr);
(*func3)<<<DIV_UP(N, THREAD_N), THREAD_N>>>(dInput, dInput+N, dOutput, a);
checkCudaErrors(cudaMemcpy(hOutput, dOutput, sizeof(int)*N, cudaMemcpyDeviceToHost));
funcResult = check_func3(&hInput[0], &hInput[N], hOutput, a);
printf("simple_kernel(const int *pIn1, const int *pIn2, int *pOut, int a) %s\n\n", funcResult ? "PASSED" : "FAILED");
testResult &= funcResult;
checkCudaErrors(cudaFree(dInput));
checkCudaErrors(cudaFree(dOutput));
checkCudaErrors(cudaFreeHost(hOutput));
checkCudaErrors(cudaFreeHost(hInput));
checkCudaErrors(cudaDeviceSynchronize());
exit(testResult ? EXIT_SUCCESS : EXIT_FAILURE);
}