CUDA:cppOverload

Sample: cppOverload
Minimum spec: SM 3.0

This sample demonstrates how to use C++ function overloading on the GPU.

Key concepts:
C++ Function Overloading
CUDA Streams and Events
 

cppOverload_kernel.cuh

__global__ void simple_kernel(const int *pIn, int *pOut, int a)
{
    __shared__ int sData[THREAD_N];
    int tid = threadIdx.x + blockDim.x*blockIdx.x;

    sData[threadIdx.x] = pIn[tid];
    __syncthreads();

    pOut[tid] = sData[threadIdx.x]*a + tid;;
}

__global__ void simple_kernel(const int2 *pIn, int *pOut, int a)
{
    __shared__ int2 sData[THREAD_N];
    int tid = threadIdx.x + blockDim.x*blockIdx.x;

    sData[threadIdx.x] = pIn[tid];
    __syncthreads();

    pOut[tid] = (sData[threadIdx.x].x + sData[threadIdx.x].y)*a + tid;;
}

__global__ void simple_kernel(const int *pIn1, const int *pIn2, int *pOut, int a)
{
    __shared__ int sData1[THREAD_N];
    __shared__ int sData2[THREAD_N];
    int tid = threadIdx.x + blockDim.x*blockIdx.x;

    sData1[threadIdx.x] = pIn1[tid];
    sData2[threadIdx.x] = pIn2[tid];
    __syncthreads();

    pOut[tid] = (sData1[threadIdx.x] + sData2[threadIdx.x])*a + tid;
}

cppOverload.cu

/*
 * Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.
 *
 * Please refer to the NVIDIA end user license agreement (EULA) associated
 * with this source code for terms and conditions that govern your use of
 * this software. Any use, reproduction, disclosure, or distribution of
 * this software and related documentation outside the terms of the EULA
 * is strictly prohibited.
 *
 */
#define THREAD_N 256
#define N 1024
#define DIV_UP(a, b) (((a) + (b) - 1) / (b))

// Includes, system
#include <stdio.h>
#include <helper_cuda.h>
#include <helper_string.h>
#include <helper_math.h>
#include "cppOverload_kernel.cuh"

const char *sampleName = "C++ Function Overloading";

#define OUTPUT_ATTR(attr)  \
    printf("Shared Size:   %d\n", (int)attr.sharedSizeBytes);   \
    printf("Constant Size: %d\n", (int)attr.constSizeBytes);                 \
    printf("Local Size:    %d\n", (int)attr.localSizeBytes);                 \
    printf("Max Threads Per Block: %d\n", attr.maxThreadsPerBlock);          \
    printf("Number of Registers: %d\n", attr.numRegs);                       \
    printf("PTX Version: %d\n", attr.ptxVersion);                            \
    printf("Binary Version: %d\n", attr.binaryVersion);                      \
     

bool check_func1(int *hInput, int *hOutput, int a)
{
    for (int i = 0; i < N; ++i)
    {
        int cpuRes = hInput[i]*a + i;

        if (hOutput[i] != cpuRes)
        {
            return false;
        }
    }

    return true;
}

bool check_func2(int2 *hInput, int *hOutput, int a)
{
    for (int i = 0; i < N; i++)
    {
        int cpuRes = (hInput[i].x + hInput[i].y)*a + i;

        if (hOutput[i] != cpuRes)
        {
            return false;
        }
    }

    return true;
}

bool check_func3(int *hInput1, int *hInput2, int *hOutput, int a)
{
    for (int i = 0; i < N; i++)
    {
        if (hOutput[i] != (hInput1[i] + hInput2[i])*a + i)
        {
            return false;
        }
    }

    return true;
}

int main(int argc, const char *argv[])
{
    int *hInput  = NULL;
    int *hOutput = NULL;
    int *dInput  = NULL;
    int *dOutput = NULL;

    printf("%s starting...\n", sampleName);

    int deviceCount;
    checkCudaErrors(cudaGetDeviceCount(&deviceCount));
    printf("DevicecheckCudaErrors Count: %d\n", deviceCount);

    int deviceID = findCudaDevice(argc, argv);
	cudaDeviceProp prop;
	checkCudaErrors(cudaGetDeviceProperties(&prop, deviceID));
	if (prop.major < 2)    
    {
        printf("ERROR: cppOverload requires GPU devices with compute SM 2.0 or higher.\n");
        printf("Current GPU device has compute SM%d.%d, Exiting...", prop.major, prop.minor);
        exit(EXIT_WAIVED);
    }
	
    checkCudaErrors(cudaSetDevice(deviceID));

    // Allocate device memory
    checkCudaErrors(cudaMalloc(&dInput , sizeof(int)*N*2));
    checkCudaErrors(cudaMalloc(&dOutput, sizeof(int)*N));

    // Allocate host memory
    checkCudaErrors(cudaMallocHost(&hInput , sizeof(int)*N*2));
    checkCudaErrors(cudaMallocHost(&hOutput, sizeof(int)*N));

    for (int i = 0; i < N*2; i++)
    {
        hInput[i] = i;
    }

    // Copy data from host to device
    checkCudaErrors(cudaMemcpy(dInput, hInput, sizeof(int)*N*2, cudaMemcpyHostToDevice));

    // Test C++ overloading
    bool testResult = true;
    bool funcResult = true;
    int a = 1;

    void (*func1)(const int *, int *, int);
    void (*func2)(const int2 *, int *, int);
    void (*func3)(const int *, const int *, int *, int);
    struct cudaFuncAttributes attr;

    // overload function 1
    func1 = simple_kernel;
    memset(&attr, 0, sizeof(attr));
    checkCudaErrors(cudaFuncSetCacheConfig(*func1, cudaFuncCachePreferShared));
    checkCudaErrors(cudaFuncGetAttributes(&attr, *func1));
    OUTPUT_ATTR(attr);
    (*func1)<<<DIV_UP(N, THREAD_N), THREAD_N>>>(dInput, dOutput, a);
    checkCudaErrors(cudaMemcpy(hOutput, dOutput, sizeof(int)*N, cudaMemcpyDeviceToHost));
    funcResult = check_func1(hInput, hOutput, a);
    printf("simple_kernel(const int *pIn, int *pOut, int a) %s\n\n", funcResult ? "PASSED" : "FAILED");
    testResult &= funcResult;

    // overload function 2
    func2 = simple_kernel;
    memset(&attr, 0, sizeof(attr));
    checkCudaErrors(cudaFuncSetCacheConfig(*func2, cudaFuncCachePreferShared));
    checkCudaErrors(cudaFuncGetAttributes(&attr, *func2));
    OUTPUT_ATTR(attr);
    (*func2)<<<DIV_UP(N, THREAD_N), THREAD_N>>>((int2 *)dInput, dOutput, a);
    checkCudaErrors(cudaMemcpy(hOutput, dOutput, sizeof(int)*N, cudaMemcpyDeviceToHost));
    funcResult = check_func2(reinterpret_cast<int2 *>(hInput), hOutput, a);
    printf("simple_kernel(const int2 *pIn, int *pOut, int a) %s\n\n", funcResult ? "PASSED" : "FAILED");
    testResult &= funcResult;

    // overload function 3
    func3 = simple_kernel;
    memset(&attr, 0, sizeof(attr));
    checkCudaErrors(cudaFuncSetCacheConfig(*func3, cudaFuncCachePreferShared));
    checkCudaErrors(cudaFuncGetAttributes(&attr, *func3));
    OUTPUT_ATTR(attr);
    (*func3)<<<DIV_UP(N, THREAD_N), THREAD_N>>>(dInput, dInput+N, dOutput, a);
    checkCudaErrors(cudaMemcpy(hOutput, dOutput, sizeof(int)*N, cudaMemcpyDeviceToHost));
    funcResult = check_func3(&hInput[0], &hInput[N], hOutput, a);
    printf("simple_kernel(const int *pIn1, const int *pIn2, int *pOut, int a) %s\n\n", funcResult ? "PASSED" : "FAILED");
    testResult &= funcResult;

    checkCudaErrors(cudaFree(dInput));
    checkCudaErrors(cudaFree(dOutput));
    checkCudaErrors(cudaFreeHost(hOutput));
    checkCudaErrors(cudaFreeHost(hInput));

    checkCudaErrors(cudaDeviceSynchronize());

    exit(testResult ? EXIT_SUCCESS : EXIT_FAILURE);
}

上一篇:【pytorch】cuda torch torchvision版本对应


下一篇:CUDA 3D convolution