传送门
一道不错的矩阵快速幂优化dpdpdp。
设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个三滴血的。
显然是可以从f[i−1]f[i-1]f[i−1]转移过来的。
但是仔细一想,这个递推关系在i=1i=1i=1~nnn的时候都是一样的,于是把后面三个状压上矩阵快速幂优化就行了。
直接转是O(T∗size3log)O(T*size^3log)O(T∗size3log)的。
于是可以用倍增的思想预处理出logloglog个数组,最后乘起来,由于结构相同可以做到O(size∗size∗logn∗T+size∗size∗size∗logn)O(size*size*log_n*T+size*size*size*log_n)O(size∗size∗logn∗T+size∗size∗size∗logn)
注意卡常优化。
代码:
#include<bits/stdc++.h>
#define Len 170
#define mod 998244353
#define ll unsigned long long
using namespace std;
int T,m,K,id[15][15][15],tot=0;
ll inv[15],ans[Len],n,tmp[Len];
const ll inf=16940360401038606353llu;
inline ll read(){
ll ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
inline void write(const ll&x){
if(x>9)write(x/10);
putchar((x-x/10*10)^48);
}
struct Matrix{
ll val[Len][Len];
inline void init(){memset(val,0,sizeof(val));}
}f[65];
inline Matrix operator*(const Matrix&a,const Matrix&b){
Matrix ret;
ret.init();
for(int i=1;i<=tot+1;++i)for(int k=1;k<=tot+1;++k)
for(int j=1;j<=tot+1;++j){{
ret.val[i][j]+=a.val[i][k]*b.val[k][j];
if(ret.val[i][j]>=inf)ret.val[i][j]-=inf;
}
}
for(int i=1;i<=tot+1;++i)for(int j=1;j<=tot+1;++j)ret.val[i][j]%=mod;
return ret;
}
inline void update(const Matrix&a){
memset(tmp,0,sizeof(tmp));
for(int i=1;i<=tot+1;++i){
for(int j=1;j<=tot+1;++j){
tmp[i]+=ans[j]*a.val[j][i];
if(tmp[i]>=inf)tmp[i]-=inf;
}
tmp[i]%=mod;
}
memcpy(ans,tmp,sizeof(tmp));
}
int main(){
T=read(),m=read(),K=read(),inv[0]=inv[1]=1;
for(int i=2;i<=10;++i)inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for(int i=0;i<=K;++i)for(int j=0;j<=(m>1?K-i:0);++j)for(int k=0;k<=(m>2?K-i-j:0);++k)id[i][j][k]=++tot;
for(int i=0;i<=K;++i)for(int j=0;j<=(m>1?K-i:0);++j)for(int k=0;k<=(m>2?K-i-j:0);++k){
int pos=id[i][j][k],t=(i+j+k)<K;
if(m==1)if(i)f[0].val[pos][id[i-1][j][k]]=inv[i+1]*i%mod;
if(m==2){
if(i)f[0].val[pos][id[i-1][j][k]]=inv[i+j+1]*i%mod;
if(j)f[0].val[pos][id[i+1][j+t-1][k]]=inv[i+j+1]*j%mod;
}
if(m==3){
if(i)f[0].val[pos][id[i-1][j][k]]=inv[i+j+k+1]*i%mod;
if(j)f[0].val[pos][id[i+1][j-1][k+t]]=inv[i+j+k+1]*j%mod;
if(k)f[0].val[pos][id[i][j+1][k+t-1]]=inv[i+j+k+1]*k%mod;
}
f[0].val[pos][pos]=f[0].val[pos][tot+1]=inv[i+j+k+1];
}
f[0].val[tot+1][tot+1]=1;
for(int i=1;i<=63;++i)f[i]=f[i-1]*f[i-1];
while(T--){
n=read(),memset(ans,0,sizeof(ans));
switch(m){
case 1:ans[id[1][0][0]]=1;break;
case 2:ans[id[0][1][0]]=1;break;
case 3:ans[id[0][0][1]]=1;break;
}
for(int i=0;n;n>>=1,++i)if(n&1)update(f[i]);
write(ans[tot+1]),puts("");
}
return 0;
}