在大学期间,经常需要租借教室。大到院系举办活动,小到学习小组自习讨论,都需要
向学校申请借教室。教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样。
面对海量租借教室的信息,我们自然希望编程解决这个问题。
我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借。共有m份
订单,每份订单用三个正整数描述,分别为dj, sj, tj,表示某租借者需要从第sj天到第tj天租
借教室(包括第sj天和第tj天),每天需要租借dj个教室。
我们假定,租借者对教室的大小、地点没有要求。即对于每份订单,我们只需要每天提
供dj个教室,而它们具体是哪些教室,每天是否是相同的教室则不用考虑。
借教室的原则是先到先得,也就是说我们要按照订单的先后顺序依次为每份订单分配教
室。如果在分配的过程中遇到一份订单无法完全满足,则需要停止教室的分配,通知当前申
请人修改订单。这里的无法满足指从第sj天到第tj天中有至少一天剩余的教室数量不足dj个。
现在我们需要知道,是否会有订单无法完全满足。如果有,需要通知哪一个申请人修改
订单。
第一行包含两个正整数n, m,表示天数和订单的数量。
提高组 day2
第二行包含n个正整数,其中第i个数为ri,表示第i天可用于租借的教室数量。
接下来有m行,每行包含三个正整数dj, sj, tj,表示租借的数量,租借开始、结束分别在
第几天。
每行相邻的两个数之间均用一个空格隔开。天数与订单均用从1开始的整数编号。
如果所有订单均可满足,则输出只有一行,包含一个整数 0。否则(订单无法完全满足)
输出两行,第一行输出一个负整数-1,第二行输出需要修改订单的申请人编号。
4 3
2 5 4 3
2 1 3
3 2 4
4 2 4
-1
2
【输入输出样例说明】
classroom.out
-1
2
第 1 份订单满足后,4 天剩余的教室数分别为 0,3,2,3。第 2 份订单要求第 2 天到
第 4 天每天提供 3 个教室,而第 3 天剩余的教室数为 2,因此无法满足。分配停止,通知第
2 个申请人修改订单。
【数据范围】
对于 10%的数据,有1 ≤ n, m ≤ 10;
对于 30%的数据,有1 ≤ n, m ≤ 1000;
对于 70%的数据,有1 ≤ n, m ≤ 105;
对于 100%的数据,有1 ≤ n, m ≤ 10^6, 0 ≤ ri, dj≤ 10^9, 1 ≤ sj≤ tj≤ n。
第一眼觉得显然线段树,然而线段树写得丑只得了40分,还不如暴力(╯‵□′)╯︵┻━┻
本题标程单调二分+验证
代码里有足够多的解释,这里不做赘述
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m;
int num[];
int r[],l[];
int room[];
int p[];
bool check(int x)
{
memset(p,,sizeof(p));
for(int i=;i<=x;i++)//枚举此方案及其之前方案所用的房间;
{
p[l[i]]-=num[i];
p[r[i]+]+=num[i];//这里只要枚举端点即可
}
for(int i=;i<=n;i++)
{
p[i]+=p[i-];//统计每天所用的总的房间数;
if(p[i]+room[i]<) return ;//不能满足即返回0;
}
return ;
}
int erfen()//单调二分
{
int right=m+;
int left=;
while(left!=right)
{
int mid=(right+left)/;
if(check(mid)) left=mid+;
else right=mid;
}
if(right==m+) return ;//如果全部满足,right没有改变过,返回0;
return right;//返回最近的、未满足的那个点;
}
void read()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&room[i]);
for(int i=;i<=m;i++) scanf("%d%d%d",&num[i],&l[i],&r[i]);
}
int main()
{
freopen("classroom.in","r",stdin);
freopen("classroom.out","w",stdout);
read();
int ans=erfen();
if(ans==) printf("%d",ans);
else printf("%d\n%d",-,ans);
return ;
}