Task Schedule
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7753 Accepted Submission(s): 2381
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Print a blank line after each test case.
题目链接:HDU 3572
拆点的最大流判断是否满流的题目,点怎么拆呢?从源点S连向每一个任务i一条容量为p的边,说明每一个任务一开始要p个流量流入,然后每一个任务i向时间点[s,e]连一条容量为1的边,说明一个任务只能同时在一个时间点被工作,即不能同时既在时间点A上加工又在时间点B上加工,然后每一个时间点向T连一条容量为m个边,说明一个时间点只能最多同时有m个机器在工作。最后你就是要判断从S流出的$n*p$个流量能否全部流入T中就好了
空间复杂度大概是$(500+500^2+500)*2$条边,$500+500$个点,原本只会最辣鸡的FF想低空卡过这题,然而被无限TLE教做人,查查题解又膜膜dinic,发现dinic也容易理解,分层的意义就是减少没有用的搜索,因为增广一定是从最小距离距离近的到最小距离远的,那么那些d[v]!=d[u]+1的点就可以被忽略掉了
代码:
#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=1010;
const int M=251000+7;
struct edge
{
int to,nxt;
int cap;
};
edge E[M<<1];
int head[N],tot,d[N]; void add(int s,int t,int cap)
{
E[tot].to=t;
E[tot].cap=cap;
E[tot].nxt=head[s];
head[s]=tot++; E[tot].to=s;
E[tot].cap=0;
E[tot].nxt=head[t];
head[t]=tot++;
}
void init()
{
CLR(head,-1);
tot=0;
}
int bfs(int s,int t)
{
CLR(d,-1);
d[s]=0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int now=Q.front();
Q.pop();
for (int i=head[now]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(d[v]==-1&&E[i].cap>0)
{
d[v]=d[now]+1;
if(v==t)
return 1;
Q.push(v);
}
}
}
return d[t]!=-1;
}
int dfs(int s,int t,int f)
{
if(s==t||!f)
return f;
int r=0;
for (int i=head[s]; ~i; i=E[i].nxt)
{
int v=E[i].to;
if(d[v]==d[s]+1&&E[i].cap)
{
int d=dfs(v,t,min(f,E[i].cap));
if(d>0)
{
E[i].cap-=d;
E[i^1].cap+=d;
r+=d;
f-=d;
if(!f)
break;
}
}
}
if(!r)
d[s]=INF;
return r;
}
int dinic(int s,int t)
{
int r=0;
while (bfs(s,t))
r+=dfs(s,t,INF);
return r;
}
int main(void)
{
int tcase,p,s,e,i,j,n,m;
scanf("%d",&tcase);
for (int q=1; q<=tcase; ++q)
{
init();
scanf("%d%d",&n,&m);
int S=0;
int tl=INF,tr=-INF;
int sump=0;
for (i=1; i<=n; ++i)
{
scanf("%d%d%d",&p,&s,&e);
add(S,i,p);
sump+=p; if(s<tl)
tl=s;
if(e>tr)
tr=e; for (j=s; j<=e; ++j)
add(i,n+j,1);
}
int T=n+tr+1;
for (i=tl; i<=tr; ++i)
add(n+i,T,m);
printf("Case %d: %s\n\n",q,dinic(S,T)==sump?"Yes":"No");
}
return 0;
}