300. 最长递增子序列

1. 题目

  给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

  子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

2. 示例

示例1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

3. 题解

  2种解题思路:动态规划、二分搜索

3.1 动态规划

  动态规划的核心思想是数学归纳法

  设计动态规划,首先需要一个dp数组,假设dp[0....i - 1]都已经算出来了,然后问自己,怎么通过这些结果算出dp[i]?

  dp[i]表示以nums[i]这个数结尾的最长递增子序列的长度。那么以nums[i]结尾的最长递增子序列起码要包含它自己,即要找到前面序列结尾比nums[i]小的子序列,然后把nums[i]拼接上去,就形成了以nums[i]结尾的新的子序列,并在前面子序列的基础上加1。

for j in range(0, i):
    if nums[i] > nums[j]:
        dp[i] = max(dp[i], dp[j] + 1)

  最长子序列,只需要对dp数组遍历一次,取最大值即可。

for i in range(n):
    res = max(res, dp[i])

3.2 二分搜索

  二分搜索相对来说,难度大一些。以数组[10,9,2,5,3,7,101,18]为例,对其分堆。

  首先10,对于第一个元素,单独为堆,此时堆数res = 1;

  元素9,从0堆开始找,9小于10,放入0堆,res=1;

  元素2,从0堆开始找,2小于9,放入0堆,res=1;

  元素5,从0堆开始找,5大于2,此时只有堆0,那么需要再次创建一个堆来存放,res+=1,res=2;

  元素3,从0堆开始找,3大于2,再找第1堆,3小于5,放入,res=2;

  元素7,7大于2,7大于3,创建新堆,第2堆堆顶元素为7,res=3;

  元素101,大于0,1,2堆顶元素,创建新堆,res=4;

  元素18,大于0,1,2堆顶元素,放入第3堆,res=4;

  输出结果:4(堆的个数就是最长子序列的长度,因为在后面堆里面一定能找到小于等于前面元素)。

4. Code实现

4.1 动态规划

 1 class Solution:
 2     # 动态规划
 3     def lengthOfLIS(self, nums: List[int]) -> int:
 4         if len(nums) <= 1:
 5             return len(nums)
 6         n = len(nums)
 7         dp, res = [1 for _ in range(n)], 0
 8         for i in range(n):
 9             for j in range(0, i):
10                 if nums[i] > nums[j]:
11                     dp[i] = max(dp[i], dp[j] + 1)
12             res = max(res, dp[i])
13         return res

4.2 二分搜索

 1 class Solution:
 2 # 二分搜索
 3     def lengthOfLISB(self, nums: List[int]) -> int:
 4         n = len(nums)
 5         if n < 2:
 6             return n
 7         top = [0 for _ in range(n)]
 8         # 堆数
 9         res = 0
10         for i in range(n):
11             # 要处理的牌
12             cur = nums[i]
13             # 搜索左边界的二分搜索
14             left, right = 0, res
15             while left < right:
16                 mid = (left + right) // 2
17                 if top[mid] > cur:
18                     right = mid
19                 elif top[mid] < cur:
20                     left = mid + 1
21                 else:
22                     right = mid
23             # 没找到合适的堆,新建一堆
24             if left == res:
25                 res += 1
26             top[left] = cur
27         return res

5. 结语

  努力去爱周围的每一个人,付出,不一定有收获,但是不付出就一定没有收获! 给街头卖艺的人零钱,不和深夜还在摆摊的小贩讨价还价。愿我的博客对你有所帮助(*^▽^*)(*^▽^*)!

  如果客官喜欢小生的园子,记得关注小生哟,小生会持续更新(#^.^#)(#^.^#)。

上一篇:【536】K.sum 与 np.sum 的区别


下一篇:机器学习笔记(二十二)——Tensorflow 2 (ImageDataGenerator)