在计算 语义分割 结果的 metrics 的时候,会通过 K.sum 来计算 TP、FN、FP 的值,从而来计算 Precision、Recall、F1 以及 IOU 的值,不过在计算的过程中,这几个值会出现大于 1 的情况,实际上是计算中出现错误,主要原因就是 K.sum 计算中的一些问题。由于标签数据以图像数据读取,pred 和 true 默认为 'uint8' 类型,对于 K.sum 在计算中会自动调整为这个范围的值,因此永远不会超过255,所以导致结算错误,而 np.sum 则可以直接计算,因此如果用 K.sum,需要提前转换数据类型。
举例:
>>> a = np.arange(25).reshape((5,5)) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) # 对于默认的数据类型,这两个没有区别 >>> K.sum(a) <tf.Tensor: shape=(), dtype=int64, numpy=300> >>> np.sum(a) 300 # 将数据类型修改,会导致计算结果不同 >>> a = a.astype('uint8') >>> K.sum(a) <tf.Tensor: shape=(), dtype=uint8, numpy=44> >>> np.sum(a) 300