终止线程的设计模式
Two-phase Termination(两阶段终止)模式——优雅的终止线程
将终止过程分成两个阶段,其中第一个阶段主要是线程 T1 向线程 T2发送终止指令,而第二阶段则是线程 T2响应终止指令。
Java 线程进入终止状态的前提是线程进入 RUNNABLE 状态,而利用java线程中断机制的interrupt() 方法,可以让线程从休眠状态转换到RUNNABLE 状态。RUNNABLE 状态转换到终止状态,优雅的方式是让 Java 线程自己执行完 run() 方法,所以一般我们采用的方法是设置一个标志位,然后线程会在合适的时机检查这个标志位,如果发现符合终止条件,则自动退出 run() 方法。
两阶段终止模式是一种应用很广泛的并发设计模式,在 Java 语言中使用两阶段终止模式来优雅地终止线程,需要注意两个关键点:一个是仅检查终止标志位是不够的,因为线程的状态可能处于休眠态;另一个是仅检查线程的中断状态也是不够的,因为我们依赖的第三方类库很可能没有正确处理中断异常,例如第三方类库在捕获到 Thread.sleep() 方法抛出的中断异常后,没有重新设置线程的中断状态,那么就会导致线程不能够正常终止。所以我们可以自定义线程的终止标志位用于终止线程。
就是一个线程的run方法运行业务逻辑 再开启一个线程设置他俩的一个共享的变量 第一个线程判断这个共享变量的状态如果满足就停止 java的中断机制就实现了这个东西
避免共享的设计模式
Immutability模式,Copy-on-Write模式,Thread-Specific Storage模式本质上都是为了避免共享。
使用时需要注意Immutability模式的属性的不可变性
Copy-on-Write模式需要注意拷贝的性能问题
Thread-Specific Storage模式需要注意异步执行问题。
Immutability模式——想破坏也破坏不了
“多个线程同时读写同一共享变量存在并发问题”,这里的必要条件之一是读写,如果只有读,而没有写,是没有并发问题的。解决并发问题,其实最简单的办法就是让共享变量只有读操作,而没有写操作。这个办法如此重要,以至于被上升到了一种解决并发问题的设计模式:不变性(Immutability)模式。所谓不变性,简单来讲,就是对象一旦被创建之后,状态就不再发生变化。换句话说,就是变量一旦被赋值,就不允许修改了(没有写操作);没有修改操作,也就是保持了不变性。
如何实现
将一个类所有的属性都设置成 final 的,并且只允许存在只读方法,那么这个类基本上就具备不可变性了。更严格的做法是这个类本身也是 final 的,也就是不允许继承。
jdk中很多类都具备不可变性,例如经常用到的 String 和 Long、Integer、Double 等基础类型的包装类都具备不可变性,这些对象的线程安全性都是靠不可变性来保证的。它们都严格遵守了不可变类的三点要求:类和属性都是 final 的,所有方法均是只读的。
Copy-on-Write模式
Java 里 String 在实现 replace() 方法的时候,并没有更改原字符串里面 value[]数组的内容,而是创建了一个新字符串,这种方法在解决不可变对象的修改问题时经常用到。它本质上是一种 Copy-on-Write 方法。所谓 Copy-on-Write,经常被缩写为 COW 或者 CoW,顾名思义就是写时复制。
不可变对象的写操作往往都是使用 Copy-on-Write 方法解决的,当然 Copy-on-Write 的应用领域并不局限于 Immutability 模式。
Copy-on-Write 才是最简单的并发解决方案,很多人都在无意中把它忽视了。它是如此简单,以至于 Java 中的基本数据类型 String、Integer、Long 等都是基于 Copy-on-Write 方案实现的。
Copy-on-Write 缺点就是消耗内存,每次修改都需要复制一个新的对象出来,好在随着自动垃圾回收(GC)算法的成熟以及硬件的发展,这种内存消耗已经渐渐可以接受了。所以在实际工作中,如果写操作非常少(读多写少的场景),可以尝试使用 Copy-on-Write。
Thread-Specific Storage 模式——没有共享就没有伤害
Thread-Specific Storage(线程本地存储) 模式是一种即使只有一个入口,也会在内部为每个线程分配特有的存储空间的模式。在 Java 标准类库中,ThreadLocal 类实现了该模式。
线程本地存储模式本质上是一种避免共享的方案,由于没有共享,所以自然也就没有并发问题。如果你需要在并发场景中使用一个线程不安全的工具类,最简单的方案就是避免共享。避免共享有两种方案,一种方案是将这个工具类作为局部变量使用,另外一种方案就是线程本地存储模式。这两种方案,局部变量方案的缺点是在高并发场景下会频繁创建对象,而线程本地存储方案,每个线程只需要创建一个工具类的实例,所以不存在频繁创建对象的问题。
多线程版本的if模式
Guarded Suspension模式和Balking模式属于多线程版本的if模式
Guarded Suspension模式需要注意性能。
Balking模式需要注意竞态问题。
Guarded Suspension模式——等我准备好哦
Guarded Suspension 模式是通过让线程等待来保护实例的安全性,即守护-挂起模式。在多线程开发中,常常为了提高应用程序的并发性,会将一个任务分解为多个子任务交给多个线程并行执行,而多个线程之间相互协作时,仍然会存在一个线程需要等待另外的线程完成后继续下一步操作。而Guarded Suspension模式可以帮助我们解决上述的等待问题。
Guarded Suspension 模式允许多个线程对实例资源进行访问,但是实例资源需要对资源的分配做出管理。
Guarded Suspension 模式也常被称作 Guarded Wait 模式、Spin Lock 模式(因为使用了 while 循环去等待),它还有一个更形象的非官方名字:多线程版本的 if。
有一个结果需要从一个线程传递到另一个线程,让他们关联同一个 GuardedObject
如果有结果不断从一个线程到另一个线程那么可以使用消息队列
JDK 中,join 的实现、Future 的实现,采用的就是此模式
因为要等待另一方的结果,因此归类到同步模式
等待唤醒机制的规范实现。此模式依赖于Java线程的阻塞唤醒机制:
Balking模式——不需要就算了
Balking是“退缩不前”的意思。如果现在不适合执行这个操作,或者没必要执行这个操作,就停止处理,直接返回。当流程的执行顺序依赖于某个共享变量的场景,可以归纳为多线程if模式。Balking 模式常用于一个线程发现另一个线程已经做了某一件相同的事,那么本线程就无需再做了,直接结束返回。
Balking模式是一种多个线程执行同一操作A时可以考虑的模式;在某一个线程B被阻塞或者执行其他操作时,其他线程同样可以完成操作A,而当线程B恢复执行或者要执行操作A时,因A已被执行,而无需线程B再执行,从而提高了B的执行效率。
Balking模式和Guarded Suspension模式一样,存在守护条件,如果守护条件不满足,则中断处理;这与Guarded Suspension模式不同,Guarded Suspension模式在守护条件不满足的时候会一直等待至可以运行。