看上去很难维护,考虑找一些必要条件。首先显然最大值-最小值=k*(r-l)。然后区间内的数需要模k同余。最后区间内的数两两不同(k=0除外)。冷静一下可以发现这些条件组合起来就是充分的了。
考虑怎么维护。最大值最小值非常简单。模k同余相当于区间内相邻两数的差都是k的倍数,可以维护差分数组的gcd。两两不同相当于区间内没有出现次数>1的数,对每个数用set维护上一个和他相同的数的位置,线段树维护,区间查询max,如果<l则说明不存在。
开始判断是否不同的写出锅了,结果删掉竟然过了23333
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
#include<set>
#include<cassert>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 300010
#define ll long long
int n,m,a[N],b[N],lst,cnt;
map<int,int> f;
set<int> pre[N<<];
int L[N<<],R[N<<],mn[N<<],mx[N<<],GCD[N<<],last[N<<];
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
void up(int k)
{
mn[k]=min(mn[k<<],mn[k<<|]);
mx[k]=max(mx[k<<],mx[k<<|]);
last[k]=max(last[k<<],last[k<<|]);
GCD[k]=gcd(GCD[k<<],GCD[k<<|]);
}
void build(int k,int l,int r)
{
L[k]=l,R[k]=r;
if (l==r)
{
mn[k]=mx[k]=a[l];GCD[k]=b[l];
last[k]=*(--pre[f[a[l]]].find(l));
return;
}
int mid=l+r>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
up(k);
}
void modify(int k,int p,int x,int op)
{
if (L[k]==R[k])
{
if (op==) mn[k]=mx[k]=x;
else if (op==) GCD[k]=x;
else last[k]=x;
return;
}
int mid=L[k]+R[k]>>;
if (p<=mid) modify(k<<,p,x,op);
else modify(k<<|,p,x,op);
up(k);
}
int qmax(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return mx[k];
int mid=L[k]+R[k]>>;
if (r<=mid) return qmax(k<<,l,r);
else if (l>mid) return qmax(k<<|,l,r);
else return max(qmax(k<<,l,mid),qmax(k<<|,mid+,r));
}
int qmin(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return mn[k];
int mid=L[k]+R[k]>>;
if (r<=mid) return qmin(k<<,l,r);
else if (l>mid) return qmin(k<<|,l,r);
else return min(qmin(k<<,l,mid),qmin(k<<|,mid+,r));
}
int qgcd(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return GCD[k];
int mid=L[k]+R[k]>>;
if (r<=mid) return qgcd(k<<,l,r);
else if (l>mid) return qgcd(k<<|,l,r);
else return gcd(qgcd(k<<,l,mid),qgcd(k<<|,mid+,r));
}
int qlast(int k,int l,int r)
{
if (L[k]==l&&R[k]==r) return last[k];
int mid=L[k]+R[k]>>;
if (r<=mid) return qlast(k<<,l,r);
else if (l>mid) return qlast(k<<|,l,r);
else return max(qlast(k<<,l,mid),qlast(k<<|,mid+,r));
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
freopen("bzoj4373.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++)
{
a[i]=read(),b[i]=abs(a[i]-a[i-]);
if (f.find(a[i])==f.end()) f[a[i]]=++cnt,pre[cnt].insert();
pre[f[a[i]]].insert(i);
}
build(,,n);
while (m--)
{
int op=read();
if (op==)
{
int p=read()^lst,x=read()^lst;
int t=f[a[p]];set<int>::iterator it=++pre[t].find(p);
if (it!=pre[t].end()) modify(,*it,*(--pre[t].find(p)),);
pre[t].erase(p);
a[p]=x;modify(,p,x,);
modify(,p,abs(a[p]-a[p-]),);
if (p<=n) modify(,p+,abs(a[p+]-a[p]),);
if (f.find(a[p])==f.end()) f[a[p]]=++cnt,pre[cnt].insert();
t=f[a[p]];it=pre[t].lower_bound(p);
if (it!=pre[t].end()) modify(,*it,p,);
it--;modify(,p,*it,);pre[t].insert(p);
}
else
{
int l=read()^lst,r=read()^lst,d=read()^lst;
if (qmax(,l,r)-qmin(,l,r)==1ll*d*(r-l)&&(d==||l==r||((qgcd(,l+,r)%d==)&&qlast(,l,r)<l))) lst++,printf("Yes\n");
else printf("No\n");
}
}
return ;
}