基于ssh,shell,python,iptables,fabric,supervisor和模板文件的多服务器配置管理

 前言:略

新服务器:NS   主服务器:OS

一:OS上新建模板目录例如 mkdir bright 用于导入一些不方便在远程修改的配置文件、redis.conf等,到需要配置的步骤时用远程cp命令覆盖掉

(重要:覆盖后要记得执行chmod修改文件必要的权限,传过去的文件权限会变 例如 chmod 755 /etc/rc.local)

除了配置文件外还有:xxx.sh shell文件将多命令放到一起

例如

 export LC_ALL=C
pip install update
apt-get install python-pip
pip install -i http://pypi.douban.com/simple/ saltTesting
pip install -r requirements.txt
pip install pexpect
pip install pymongo==3.2
pip install tornado
pip install supervisor

start.sh

其中有一句

pip install -r requirements.txt

这是在OS上  pip freeze > requirements.txt 得到的环境依赖(当然执行的时候有些会因为版本之类的问题跑失败,那么测试时要找出无法执行的在requirements.txt中去掉并找到合适的安装命令写到shell 例如start.sh中)

简单的安装如此做即可,像redis,nginx等复杂安装我们用python脚本来做(一是为了更好的控制命令,可以利用灵活的语法变更一些配置,*定制。二是方便保存下来重复利用,除了这个项目拿到别的地方也可以继续用。)

例如一键(git提交代码,安装redis,安装mongo,安装nginx)脚本,这个只是示例,具体自己适配吧,写的比较简单

 #coding:utf-8
import subprocess
import datetime
import time
import random
import sys
import os MONGO = 'https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.0.6.tgz'
REDIS = 'http://download.redis.io/releases/redis-3.0.7.tar.gz'
NGINX ='http://nginx.org/download/nginx-1.9.15.tar.gz'
MONGOTAR ='mongodb-linux-x86_64-3.0.6.tgz'
MONGODIR ='mongodb-linux-x86_64-3.0.6'
REDISTAR ='redis-3.0.7.tar.gz'
REDISDIR ='redis-3.0.7'
NGINXTAR ='nginx-1.9.15.tar.gz'
NGINXDIR = 'nginx-1.9.15' SUDOPWD = 'bright' print datetime.datetime.now() print "当前支持功能 : 0:自定义命令文本 1:git一键提交代码 2:一键mongo安装\n3:一键redis安装(执行一遍后需要手动更改( vi /usr/local/redis/etc/redis.conf )中daemon = yes bind 127.0.0.1再次执行) \n4:一键nginx安装(执行一遍后需要手动更改(vi /usr/local/nginx/etc/nginx.conf)再次执行) \n使用技巧:当前0是直接复制history命令粘贴形式,如其他形式更方便使用可自行更改strcmds函数。 "
FUNCTIONS = input("输入功能 :" ) def strcmds(file):
f = open(file)
lines = f.readlines()
data=[]
for line in lines:
temp = line.replace("\n", "")
temp=temp[7:]
data.append(temp)
print data
return data def shcall(cmd):
if cmd[0] == 's' and cmd[1] == 'u' and cmd[2] == 'd':
#f = open("adpwd.txt","w")
#f.write(SUDOPWD)
p=subprocess.Popen(cmd,shell=True,close_fds=True,universal_newlines=True,stdin=subprocess.PIPE,stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
p.stdin.write(b'%s\n' % SUDOPWD)
#f.close()
else:
p=subprocess.Popen(cmd,shell=True,close_fds=True,universal_newlines=True,stdin=subprocess.PIPE,stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
while p.poll() == None:
time.sleep(0.1)
print p.stdout.readline()
print p.stdout.read()
#print 'returen code:', p.returncode def showmsg(count,cmds):
print "luckynum: ",random.randint(0,999),"Connect me WeChat: brightlike"
print 'Your work has done: ',"%.2f" % round(float(count)*100/len(cmds),2),'%' def main():
count = 0
if FUNCTIONS == 0:
cmds=strcmds('a.txt') #redis
for i in cmds:
print i
if i[0] == 'v' and i[1] == 'i':
print 'vim process'
shcall(i)
if i[0] == 's' and i[1] == 'u' and i[2] == 'd':
print 'admin process'
shcall(i)
count = count+1
showmsg(count,cmds)
if FUNCTIONS == 1:
cmds=['git status','git add -A .','git commit -a -m "fast commit all"','git push','git status']
for i in cmds:
with open('git.txt','wr') as f:
f.write('%s\n' % i)
print i
if i[4] == 'p' and i[5] == 'u' and i[6] == 's':
print 'push process'
shcall(i)
else:
shcall(i)
count = count+1
showmsg(count,cmds)
if FUNCTIONS == 2: #pip install pymongo==3.2
cmds=['sudo chmod 777 /usr/local','sudo mkdir -p /data/db','mkdir /usr/local/mongodb','curl -O %s' % MONGO,'tar -zxvf %s' % MONGOTAR,'mv %s/ /usr/local/mongodb' % MONGODIR,'export PATH=<mongodb-install-directory>/bin:$PATH','export LC_ALL=C','echo "/usr/local/mongodb/bin/mongod --dbpath=/usr/local/mongodb/data –logpath=/usr/local/mongodb/logs –logappend --auth –port=27017" >> /etc/rc.local','mongod --repair','./mongod --dbpath=/data/db --rest','sudo find /usr/local -name mongodb.conf']
for i in cmds:
with open('mongo.txt','wr') as f:
f.write('%s\n' % i)
print i
shcall(i)
count = count+1
showmsg(count,cmds)
if FUNCTIONS == 3: #pip install redis
if os.path.exists('/usr/local/redis/etc/'):
cmds=['find /usr/local -name redis.conf','/usr/local/redis/bin/redis-server /usr/local/redis/etc/redis.conf','ps aux |grep redis']
cmds=['find /usr/local -name redis.conf','/usr/local/redis/bin/redis-server /usr/local/redis/etc/redis.conf','ps aux |grep redis','sudo chmod 777 /usr/local','mkdir -p /usr/local/redis/bin','mkdir -p /usr/local/redis/etc','curl -O %s' % REDIS,'tar xvf %s' % REDISTAR,'mv %s /usr/local' % REDISDIR,'export DESTDIR=/usr/local/%s' % REDISDIR,'./configure --prefix=/usr/local/%s' % REDISDIR,'make -C /usr/local/%s && make install -C /usr/local/%s' % (REDISDIR,REDISDIR),'cp /usr/local/%s/redis.conf /usr/local/redis/etc' % REDISDIR,'cp -r /usr/local/%s/src/. /usr/local/redis/bin' % REDISDIR]
for i in cmds:
with open('redis.txt','wr') as f:
f.write('%s\n' % i)
print i
shcall(i)
count = count+1
showmsg(count,cmds)
if FUNCTIONS == 4: #pip install nginx
if os.path.exists('/usr/local/%s/' % NGINXDIR):
cmds=['find /usr/local -name nginx.conf','/usr/local/nginx/etc/nginx.conf start','ps aux |grep nginx']
cmds=['yum -y install pcre-devel','yum -y install openssl openssl-devel','pip install pcre-devel','pip install install openssl openssl-devel','curl -O %s' % NGINX,'tar xvf %s' % NGINXTAR,'mkdir -p /usr/local/nginx/bin','mkdir -p /usr/local/nginx/etc','mv %s /usr/local' % NGINXDIR,'export DESTDIR=/usr/local/%s' % NGINXDIR,'cd /usr/local/%s && ./configure' % NGINXDIR,'make -C /usr/local/%s && make install -C /usr/local/%s' % (NGINXDIR,NGINXDIR),'cp /usr/local/%s/nginx.conf /usr/local/nginx/etc' % NGINXDIR,'find /usr/local -name nginx.conf']
for i in cmds:
print i
shcall(i)
count = count+1
showmsg(count,cmds)
print "Hope you happy to work, even working on computer every day is boring.\nConnect me WeChat: brightlike"
#shcall('ping -c 10 -i 0.5 119.75.217.109') if __name__ == '__main__':
main()

shells.py

二.ssh 有了稳定连接的可能才可以谈远程配置

OS:

cat .ssh/id_rsa.pub  查看key

NS:

ssh-keygen -t rsa -C “”  (引号内输入便于识别内容) 生成ssh目录及公钥

vi .ssh/authorized_keys  添加OS上key

三:fabric 本文核心 远程操作基于此工具  安装: pip install fabric

命令执行规则  : fabric + fabfile.py文件中函数名 例 fab setup

示例代码

 #coding:utf-8
from fabric.api import *
import os
#传文件后记得更改文件权限
SENDROUTE ='/root'
SENDFILE ='start.sh'
env.hosts=['111.111.111.111:1111','222.222.222.222']#服务器列表
#进行角色分组,需要安装的服务器,后期优化的服务器等等
env.roledefs = {
'setup':['111.111.111.111:1111','222.222.222.222'],
'seo'['111.111.111.111:1111','222.222.222.222:2222','3.3.3.3']
}
#下面这行语法是指定哪些角色服务器执行,这里是安装,不用这行代表对env.hosts列表中服务器执行
@roles ('setup')
def setup():
with lcd('/root'):#lcd是在本地目录运行命令
with settings(warn_only=True):
result = put("/root/xxx.tar") #xxx.tar为本机上打包的所有的模板文件和程序代码功能模块等
if result.failed and not confirm("put file failed, Continue[Y/N]?"):
abort("Aborting file put task!")
with cd('/root'):#cd为在远程服务器上运行命令
run('tar zxvf xxx.tar && rm -f xxx.tar')
with cd('/root/bright'):
run('bash start.sh')
#这后面都是对应执行命令只举这一个例子,这里是mongo安装
with cd('/root/bright/mongo'):
run('python mongo.py')
run('bash mongo.sh') #单独传文件主要安装配置后优化更新代码用
def send():
with cd('%s' % SENDROUTE):
with settings(warn_only=True):
result = put("%s/%s" % (SENDROUTE,SENDFILE))
with cd('/root'):
run('mv %s %s' % (SENDFILE,SENDROUTE))
run('chmod 755 %s/%s' % (SENDROUTE,SENDFILE))
if result.failed and not confirm("put file failed, Continue[Y/N]?"):
abort("Aborting file put task!")

fabfile.py

需要提前归档好需要的文件和模板目录 tar --exclude=.git --exclude=.ssh -czvf xxx.tar /root (可以排除一些不必要的文件如git等)

另外还可以写一些查看日志(tail -20 xxx.stderr.log) 的命令,有个技巧,Fabric 与 nohup 的问题

nohup命令默认是无法直接fabric的,执行不生效,可以曲线救国加延迟(

run('echo "nohup python main.py  &" > xxx.sh')

run('bash xxx.sh && sleep 1')

)解决

四:shell 解决命令太多等问题,以及安装配置启动文件等

这里有个获取本地ip的技巧,利用sed拿到,当然这个不一定适用,有些网络环境比较复杂的机器需要稍微更改下匹配语句

 ifconfig | sed -En 's/127.0.0.*//;s/.*inet (addr:)?(([0-9]*\.){3}[0-9]*).*/\2/p'

get_ip.sh

ifconfig | sed -En 's/127.0.0.*//;s/192.168.*//;s/172.*//;s/10\.[0-255]\.*\.*//;s/.*inet (addr:)?(([0-9]*\.){3}[*0-9]*).*/\2/p'  #这里去掉了局域网

拿到ip后我们要用到需要更改ip的模板文件上,再来个bash

 cmd="s/{HOST_IP}/"$(bash get_ip.sh)"/"
sed -i "$cmd" /root/bright/xxx.py #xxx.py为模板文件 需要更改为当前ip的地方提前改成HOST = '{HOST_IP}'

replace_ip.sh

五:supervisor 进程管理工具,安装 :pip install supervisor

配置文件直接放到模板目录里

 [unix_http_server]
file = /var/run/supervisor.sock
chmod = 0777
chown= root:root [inet_http_server]
# Web管理界面设定
port=11111#(端口自定)
username = bright
password = bright [rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface [supervisorctl]
serverurl = unix:///var/run/supervisor.sock [supervisord]
logfile=/var/log/supervisord/supervisord.log ;(main log file;default $CWD/supervisord.log)
logfile_maxbytes=50MB ;(max main logfile bytes b4 rotation;default 50MB)
logfile_backups=10 ; (num of main logfile rotation backups;default 10)
loglevel=info ; (log level;default info; others: debug,warn,trace)
pidfile=/var/run/supervisord.pid ;(supervisord pidfile;default supervisord.pid)
#nodaemon=true ; (start in foreground if true;default false)
minfds=1024 ; (min. avail startup file descriptors;default 1024)
minprocs=200 ; (min. avail process descriptors;default 200)
user=root ; (default is current user, required if root)
#下面为示例项目启动,有些项目会有多个进程要跑,按下面格式复用即可
[program:xxx]
directory=/root/xxx/xxx
command =python main.py
user = root
autostart = true
autoresart = true
stderr_logfile = /var/log/supervisor/xxx.stderr.log
stdout_logfile = /var/log/supervisor/xxx.stdout.log

supervisord.conf

当然现在还无法开机或reboot自启,还需要再来个bash脚本

 cp /root/bright/supervisord.conf /etc/
mkdir /var/log/supervisor #没有log文件路径可能会报错
cp /root/bright/rc.local /etc/
chmod /etc/rc.local #rc.local为自启文件
chmod /etc/supervisord.conf

autorun.sh

 #!/bin/sh -e
#
# rc.local
#
# This script is executed at the end of each multiuser runlevel.
# Make sure that the script will "exit 0" on success or any other
# value on error.
#
# In order to enable or disable this script just change the execution
# bits.
#
# By default this script does nothing.
supervisord -c /etc/supervisord.conf
exit 0 #如有其它也需要自启却不用supervisor的可以加在此句之前,保存后记得ls -l /etc/rc.local检查下文件权限,如还不能自启可尝试运行dpkg-reconfigure dash 选择NO选项

rc.local

六: iptables 配置过滤规则,尽可能避免外部入侵,如数据库等

这里举个防止redis入侵的情况,不小心把端口开在可公网是十分危险的,默认启动redis是暴露在公网,所以配置文件中bind ip那里切记修改为本地127.0.0.1,运行时也要通过配置文件跑

 iptables -F
iptables -A INPUT -p tcp -s 127.0.0.1 --dport -j ACCEPT #6379为redis默认启动端口,其它照葫芦画瓢即可,iptables要配置谨慎,不然自己都连不上去会很惨,嗯嗯
iptables -A INPUT -p tcp --dport -j DROP

iptables.sh

示例redis.conf(文件较长)

 # Redis configuration file example.
#
# Note that in order to read the configuration file, Redis must be
# started with the file path as first argument:
#
# ./redis-server /path/to/redis.conf # Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same. ################################## INCLUDES ################################### # Include one or more other config files here. This is useful if you
# have a standard template that goes to all Redis servers but also need
# to customize a few per-server settings. Include files can include
# other files, so use this wisely.
#
# Notice option "include" won't be rewritten by command "CONFIG REWRITE"
# from admin or Redis Sentinel. Since Redis always uses the last processed
# line as value of a configuration directive, you'd better put includes
# at the beginning of this file to avoid overwriting config change at runtime.
#
# If instead you are interested in using includes to override configuration
# options, it is better to use include as the last line.
#
# include /path/to/local.conf
# include /path/to/other.conf ################################ GENERAL ##################################### # By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
daemonize yes # When running daemonized, Redis writes a pid file in /var/run/redis.pid by
# default. You can specify a custom pid file location here.
pidfile /var/run/redis/redis-server.pid # Accept connections on the specified port, default is 6379.
# If port 0 is specified Redis will not listen on a TCP socket.
port 6379 # TCP listen() backlog.
#
# In high requests-per-second environments you need an high backlog in order
# to avoid slow clients connections issues. Note that the Linux kernel
# will silently truncate it to the value of /proc/sys/net/core/somaxconn so
# make sure to raise both the value of somaxconn and tcp_max_syn_backlog
# in order to get the desired effect.
tcp-backlog 511 # By default Redis listens for connections from all the network interfaces
# available on the server. It is possible to listen to just one or multiple
# interfaces using the "bind" configuration directive, followed by one or
# more IP addresses.
#
# Examples:
#
# bind 192.168.1.100 10.0.0.1
bind 127.0.0.1 # Specify the path for the Unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /var/run/redis/redis.sock
# unixsocketperm 700 # Close the connection after a client is idle for N seconds (0 to disable)
timeout 0 # TCP keepalive.
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
#
# 1) Detect dead peers.
# 2) Take the connection alive from the point of view of network
# equipment in the middle.
#
# On Linux, the specified value (in seconds) is the period used to send ACKs.
# Note that to close the connection the double of the time is needed.
# On other kernels the period depends on the kernel configuration.
#
# A reasonable value for this option is 60 seconds.
tcp-keepalive 0 # Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
loglevel notice # Specify the log file name. Also the empty string can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
logfile /var/log/redis/redis-server.log # To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# syslog-enabled no # Specify the syslog identity.
# syslog-ident redis # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
# syslog-facility local0 # Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
databases 16 ################################ SNAPSHOTTING ################################
#
# Save the DB on disk:
#
# save <seconds> <changes>
#
# Will save the DB if both the given number of seconds and the given
# number of write operations against the DB occurred.
#
# In the example below the behaviour will be to save:
# after 900 sec (15 min) if at least 1 key changed
# after 300 sec (5 min) if at least 10 keys changed
# after 60 sec if at least 10000 keys changed
#
# Note: you can disable saving completely by commenting out all "save" lines.
#
# It is also possible to remove all the previously configured save
# points by adding a save directive with a single empty string argument
# like in the following example:
#
# save "" save 900 1
save 300 10
save 60 10000 # By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
stop-writes-on-bgsave-error yes # Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes # Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
rdbchecksum yes # The filename where to dump the DB
dbfilename dump.rdb # The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
#
# The Append Only File will also be created inside this directory.
#
# Note that you must specify a directory here, not a file name.
dir /var/lib/redis ################################# REPLICATION ################################# # Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. A few things to understand ASAP about Redis replication.
#
# 1) Redis replication is asynchronous, but you can configure a master to
# stop accepting writes if it appears to be not connected with at least
# a given number of slaves.
# 2) Redis slaves are able to perform a partial resynchronization with the
# master if the replication link is lost for a relatively small amount of
# time. You may want to configure the replication backlog size (see the next
# sections of this file) with a sensible value depending on your needs.
# 3) Replication is automatic and does not need user intervention. After a
# network partition slaves automatically try to reconnect to masters
# and resynchronize with them.
#
# slaveof <masterip> <masterport> # If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#
# masterauth <master-password> # When a slave loses its connection with the master, or when the replication
# is still in progress, the slave can act in two different ways:
#
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
# still reply to client requests, possibly with out of date data, or the
# data set may just be empty if this is the first synchronization.
#
# 2) if slave-serve-stale-data is set to 'no' the slave will reply with
# an error "SYNC with master in progress" to all the kind of commands
# but to INFO and SLAVEOF.
#
slave-serve-stale-data yes # You can configure a slave instance to accept writes or not. Writing against
# a slave instance may be useful to store some ephemeral data (because data
# written on a slave will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
#
# Since Redis 2.6 by default slaves are read-only.
#
# Note: read only slaves are not designed to be exposed to untrusted clients
# on the internet. It's just a protection layer against misuse of the instance.
# Still a read only slave exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
# security of read only slaves using 'rename-command' to shadow all the
# administrative / dangerous commands.
slave-read-only yes # Replication SYNC strategy: disk or socket.
#
# -------------------------------------------------------
# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
# -------------------------------------------------------
#
# New slaves and reconnecting slaves that are not able to continue the replication
# process just receiving differences, need to do what is called a "full
# synchronization". An RDB file is transmitted from the master to the slaves.
# The transmission can happen in two different ways:
#
# 1) Disk-backed: The Redis master creates a new process that writes the RDB
# file on disk. Later the file is transferred by the parent
# process to the slaves incrementally.
# 2) Diskless: The Redis master creates a new process that directly writes the
# RDB file to slave sockets, without touching the disk at all.
#
# With disk-backed replication, while the RDB file is generated, more slaves
# can be queued and served with the RDB file as soon as the current child producing
# the RDB file finishes its work. With diskless replication instead once
# the transfer starts, new slaves arriving will be queued and a new transfer
# will start when the current one terminates.
#
# When diskless replication is used, the master waits a configurable amount of
# time (in seconds) before starting the transfer in the hope that multiple slaves
# will arrive and the transfer can be parallelized.
#
# With slow disks and fast (large bandwidth) networks, diskless replication
# works better.
repl-diskless-sync no # When diskless replication is enabled, it is possible to configure the delay
# the server waits in order to spawn the child that transfers the RDB via socket
# to the slaves.
#
# This is important since once the transfer starts, it is not possible to serve
# new slaves arriving, that will be queued for the next RDB transfer, so the server
# waits a delay in order to let more slaves arrive.
#
# The delay is specified in seconds, and by default is 5 seconds. To disable
# it entirely just set it to 0 seconds and the transfer will start ASAP.
repl-diskless-sync-delay 5 # Slaves send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_slave_period option. The default value is 10
# seconds.
#
# repl-ping-slave-period 10 # The following option sets the replication timeout for:
#
# 1) Bulk transfer I/O during SYNC, from the point of view of slave.
# 2) Master timeout from the point of view of slaves (data, pings).
# 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-slave-period otherwise a timeout will be detected
# every time there is low traffic between the master and the slave.
#
# repl-timeout 60 # Disable TCP_NODELAY on the slave socket after SYNC?
#
# If you select "yes" Redis will use a smaller number of TCP packets and
# less bandwidth to send data to slaves. But this can add a delay for
# the data to appear on the slave side, up to 40 milliseconds with
# Linux kernels using a default configuration.
#
# If you select "no" the delay for data to appear on the slave side will
# be reduced but more bandwidth will be used for replication.
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and slaves are many hops away, turning this to "yes" may
# be a good idea.
repl-disable-tcp-nodelay no # Set the replication backlog size. The backlog is a buffer that accumulates
# slave data when slaves are disconnected for some time, so that when a slave
# wants to reconnect again, often a full resync is not needed, but a partial
# resync is enough, just passing the portion of data the slave missed while
# disconnected.
#
# The bigger the replication backlog, the longer the time the slave can be
# disconnected and later be able to perform a partial resynchronization.
#
# The backlog is only allocated once there is at least a slave connected.
#
# repl-backlog-size 1mb # After a master has no longer connected slaves for some time, the backlog
# will be freed. The following option configures the amount of seconds that
# need to elapse, starting from the time the last slave disconnected, for
# the backlog buffer to be freed.
#
# A value of 0 means to never release the backlog.
#
# repl-backlog-ttl 3600 # The slave priority is an integer number published by Redis in the INFO output.
# It is used by Redis Sentinel in order to select a slave to promote into a
# master if the master is no longer working correctly.
#
# A slave with a low priority number is considered better for promotion, so
# for instance if there are three slaves with priority 10, 100, 25 Sentinel will
# pick the one with priority 10, that is the lowest.
#
# However a special priority of 0 marks the slave as not able to perform the
# role of master, so a slave with priority of 0 will never be selected by
# Redis Sentinel for promotion.
#
# By default the priority is 100.
slave-priority 100 # It is possible for a master to stop accepting writes if there are less than
# N slaves connected, having a lag less or equal than M seconds.
#
# The N slaves need to be in "online" state.
#
# The lag in seconds, that must be <= the specified value, is calculated from
# the last ping received from the slave, that is usually sent every second.
#
# This option does not GUARANTEE that N replicas will accept the write, but
# will limit the window of exposure for lost writes in case not enough slaves
# are available, to the specified number of seconds.
#
# For example to require at least 3 slaves with a lag <= 10 seconds use:
#
# min-slaves-to-write 3
# min-slaves-max-lag 10
#
# Setting one or the other to 0 disables the feature.
#
# By default min-slaves-to-write is set to 0 (feature disabled) and
# min-slaves-max-lag is set to 10. ################################## SECURITY ################################### # Require clients to issue AUTH <PASSWORD> before processing any other
# commands. This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
# requirepass foobared # Command renaming.
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
#
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to slaves may cause problems. ################################### LIMITS #################################### # Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
#
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#
# maxclients 10000 # Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU cache, or to set
# a hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
#
# maxmemory <bytes> # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key according to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys-random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations
#
# Note: with any of the above policies, Redis will return an error on write
# operations, when there are no suitable keys for eviction.
#
# At the date of writing these commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#
# maxmemory-policy noeviction # LRU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Redis will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs a bit more CPU. 3 is very fast but not very accurate.
#
# maxmemory-samples 5 ############################## APPEND ONLY MODE ############################### # By default Redis asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Redis process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Redis can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Redis process itself happens, but the operating system is
# still running correctly.
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Redis will load the AOF, that is the file
# with the better durability guarantees.
#
# Please check http://redis.io/topics/persistence for more information. appendonly no # The name of the append only file (default: "appendonly.aof") appendfilename "appendonly.aof" # The fsync() call tells the Operating System to actually write data on disk
# instead of waiting for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log. Slow, Safest.
# everysec: fsync only one time every second. Compromise.
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# More details please check the following article:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec". # appendfsync always
appendfsync everysec
# appendfsync no # When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving, the durability of Redis is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability. no-appendfsync-on-rewrite no # Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature. auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb # An AOF file may be found to be truncated at the end during the Redis
# startup process, when the AOF data gets loaded back into memory.
# This may happen when the system where Redis is running
# crashes, especially when an ext4 filesystem is mounted without the
# data=ordered option (however this can't happen when Redis itself
# crashes or aborts but the operating system still works correctly).
#
# Redis can either exit with an error when this happens, or load as much
# data as possible (the default now) and start if the AOF file is found
# to be truncated at the end. The following option controls this behavior.
#
# If aof-load-truncated is set to yes, a truncated AOF file is loaded and
# the Redis server starts emitting a log to inform the user of the event.
# Otherwise if the option is set to no, the server aborts with an error
# and refuses to start. When the option is set to no, the user requires
# to fix the AOF file using the "redis-check-aof" utility before to restart
# the server.
#
# Note that if the AOF file will be found to be corrupted in the middle
# the server will still exit with an error. This option only applies when
# Redis will try to read more data from the AOF file but not enough bytes
# will be found.
aof-load-truncated yes ################################ LUA SCRIPTING ############################### # Max execution time of a Lua script in milliseconds.
#
# If the maximum execution time is reached Redis will log that a script is
# still in execution after the maximum allowed time and will start to
# reply to queries with an error.
#
# When a long running script exceeds the maximum execution time only the
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
# used to stop a script that did not yet called write commands. The second
# is the only way to shut down the server in the case a write command was
# already issued by the script but the user doesn't want to wait for the natural
# termination of the script.
#
# Set it to 0 or a negative value for unlimited execution without warnings.
lua-time-limit 5000 ################################ REDIS CLUSTER ###############################
#
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however
# in order to mark it as "mature" we need to wait for a non trivial percentage
# of users to deploy it in production.
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#
# Normal Redis instances can't be part of a Redis Cluster; only nodes that are
# started as cluster nodes can. In order to start a Redis instance as a
# cluster node enable the cluster support uncommenting the following:
#
# cluster-enabled yes # Every cluster node has a cluster configuration file. This file is not
# intended to be edited by hand. It is created and updated by Redis nodes.
# Every Redis Cluster node requires a different cluster configuration file.
# Make sure that instances running in the same system do not have
# overlapping cluster configuration file names.
#
# cluster-config-file nodes-6379.conf # Cluster node timeout is the amount of milliseconds a node must be unreachable
# for it to be considered in failure state.
# Most other internal time limits are multiple of the node timeout.
#
# cluster-node-timeout 15000 # A slave of a failing master will avoid to start a failover if its data
# looks too old.
#
# There is no simple way for a slave to actually have a exact measure of
# its "data age", so the following two checks are performed:
#
# 1) If there are multiple slaves able to failover, they exchange messages
# in order to try to give an advantage to the slave with the best
# replication offset (more data from the master processed).
# Slaves will try to get their rank by offset, and apply to the start
# of the failover a delay proportional to their rank.
#
# 2) Every single slave computes the time of the last interaction with
# its master. This can be the last ping or command received (if the master
# is still in the "connected" state), or the time that elapsed since the
# disconnection with the master (if the replication link is currently down).
# If the last interaction is too old, the slave will not try to failover
# at all.
#
# The point "2" can be tuned by user. Specifically a slave will not perform
# the failover if, since the last interaction with the master, the time
# elapsed is greater than:
#
# (node-timeout * slave-validity-factor) + repl-ping-slave-period
#
# So for example if node-timeout is 30 seconds, and the slave-validity-factor
# is 10, and assuming a default repl-ping-slave-period of 10 seconds, the
# slave will not try to failover if it was not able to talk with the master
# for longer than 310 seconds.
#
# A large slave-validity-factor may allow slaves with too old data to failover
# a master, while a too small value may prevent the cluster from being able to
# elect a slave at all.
#
# For maximum availability, it is possible to set the slave-validity-factor
# to a value of 0, which means, that slaves will always try to failover the
# master regardless of the last time they interacted with the master.
# (However they'll always try to apply a delay proportional to their
# offset rank).
#
# Zero is the only value able to guarantee that when all the partitions heal
# the cluster will always be able to continue.
#
# cluster-slave-validity-factor 10 # Cluster slaves are able to migrate to orphaned masters, that are masters
# that are left without working slaves. This improves the cluster ability
# to resist to failures as otherwise an orphaned master can't be failed over
# in case of failure if it has no working slaves.
#
# Slaves migrate to orphaned masters only if there are still at least a
# given number of other working slaves for their old master. This number
# is the "migration barrier". A migration barrier of 1 means that a slave
# will migrate only if there is at least 1 other working slave for its master
# and so forth. It usually reflects the number of slaves you want for every
# master in your cluster.
#
# Default is 1 (slaves migrate only if their masters remain with at least
# one slave). To disable migration just set it to a very large value.
# A value of 0 can be set but is useful only for debugging and dangerous
# in production.
#
# cluster-migration-barrier 1 # By default Redis Cluster nodes stop accepting queries if they detect there
# is at least an hash slot uncovered (no available node is serving it).
# This way if the cluster is partially down (for example a range of hash slots
# are no longer covered) all the cluster becomes, eventually, unavailable.
# It automatically returns available as soon as all the slots are covered again.
#
# However sometimes you want the subset of the cluster which is working,
# to continue to accept queries for the part of the key space that is still
# covered. In order to do so, just set the cluster-require-full-coverage
# option to no.
#
# cluster-require-full-coverage yes # In order to setup your cluster make sure to read the documentation
# available at http://redis.io web site. ################################## SLOW LOG ################################### # The Redis Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
#
# You can configure the slow log with two parameters: one tells Redis
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands. # The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
slowlog-log-slower-than 10000 # There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
slowlog-max-len 128 ################################ LATENCY MONITOR ############################## # The Redis latency monitoring subsystem samples different operations
# at runtime in order to collect data related to possible sources of
# latency of a Redis instance.
#
# Via the LATENCY command this information is available to the user that can
# print graphs and obtain reports.
#
# The system only logs operations that were performed in a time equal or
# greater than the amount of milliseconds specified via the
# latency-monitor-threshold configuration directive. When its value is set
# to zero, the latency monitor is turned off.
#
# By default latency monitoring is disabled since it is mostly not needed
# if you don't have latency issues, and collecting data has a performance
# impact, that while very small, can be measured under big load. Latency
# monitoring can easily be enabled at runtime using the command
# "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.
latency-monitor-threshold 0 ############################# EVENT NOTIFICATION ############################## # Redis can notify Pub/Sub clients about events happening in the key space.
# This feature is documented at http://redis.io/topics/notifications
#
# For instance if keyspace events notification is enabled, and a client
# performs a DEL operation on key "foo" stored in the Database 0, two
# messages will be published via Pub/Sub:
#
# PUBLISH __keyspace@0__:foo del
# PUBLISH __keyevent@0__:del foo
#
# It is possible to select the events that Redis will notify among a set
# of classes. Every class is identified by a single character:
#
# K Keyspace events, published with __keyspace@<db>__ prefix.
# E Keyevent events, published with __keyevent@<db>__ prefix.
# g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
# $ String commands
# l List commands
# s Set commands
# h Hash commands
# z Sorted set commands
# x Expired events (events generated every time a key expires)
# e Evicted events (events generated when a key is evicted for maxmemory)
# A Alias for g$lshzxe, so that the "AKE" string means all the events.
#
# The "notify-keyspace-events" takes as argument a string that is composed
# of zero or multiple characters. The empty string means that notifications
# are disabled.
#
# Example: to enable list and generic events, from the point of view of the
# event name, use:
#
# notify-keyspace-events Elg
#
# Example 2: to get the stream of the expired keys subscribing to channel
# name __keyevent@0__:expired use:
#
# notify-keyspace-events Ex
#
# By default all notifications are disabled because most users don't need
# this feature and the feature has some overhead. Note that if you don't
# specify at least one of K or E, no events will be delivered.
notify-keyspace-events "" ############################### ADVANCED CONFIG ############################### # Hashes are encoded using a memory efficient data structure when they have a
# small number of entries, and the biggest entry does not exceed a given
# threshold. These thresholds can be configured using the following directives.
hash-max-ziplist-entries 512
hash-max-ziplist-value 64 # Similarly to hashes, small lists are also encoded in a special way in order
# to save a lot of space. The special representation is only used when
# you are under the following limits:
list-max-ziplist-entries 512
list-max-ziplist-value 64 # Sets have a special encoding in just one case: when a set is composed
# of just strings that happen to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
set-max-intset-entries 512 # Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64 # HyperLogLog sparse representation bytes limit. The limit includes the
# 16 bytes header. When an HyperLogLog using the sparse representation crosses
# this limit, it is converted into the dense representation.
#
# A value greater than 16000 is totally useless, since at that point the
# dense representation is more memory efficient.
#
# The suggested value is ~ 3000 in order to have the benefits of
# the space efficient encoding without slowing down too much PFADD,
# which is O(N) with the sparse encoding. The value can be raised to
# ~ 10000 when CPU is not a concern, but space is, and the data set is
# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
hll-sparse-max-bytes 3000 # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation Redis uses (see dict.c)
# performs a lazy rehashing: the more operation you run into a hash table
# that is rehashing, the more rehashing "steps" are performed, so if the
# server is idle the rehashing is never complete and some more memory is used
# by the hash table.
#
# The default is to use this millisecond 10 times every second in order to
# actively rehash the main dictionaries, freeing memory when possible.
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Redis can reply from time to time
# to queries with 2 milliseconds delay.
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
activerehashing yes # The client output buffer limits can be used to force disconnection of clients
# that are not reading data from the server fast enough for some reason (a
# common reason is that a Pub/Sub client can't consume messages as fast as the
# publisher can produce them).
#
# The limit can be set differently for the three different classes of clients:
#
# normal -> normal clients including MONITOR clients
# slave -> slave clients
# pubsub -> clients subscribed to at least one pubsub channel or pattern
#
# The syntax of every client-output-buffer-limit directive is the following:
#
# client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
#
# A client is immediately disconnected once the hard limit is reached, or if
# the soft limit is reached and remains reached for the specified number of
# seconds (continuously).
# So for instance if the hard limit is 32 megabytes and the soft limit is
# 16 megabytes / 10 seconds, the client will get disconnected immediately
# if the size of the output buffers reach 32 megabytes, but will also get
# disconnected if the client reaches 16 megabytes and continuously overcomes
# the limit for 10 seconds.
#
# By default normal clients are not limited because they don't receive data
# without asking (in a push way), but just after a request, so only
# asynchronous clients may create a scenario where data is requested faster
# than it can read.
#
# Instead there is a default limit for pubsub and slave clients, since
# subscribers and slaves receive data in a push fashion.
#
# Both the hard or the soft limit can be disabled by setting them to zero.
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit slave 256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60 # Redis calls an internal function to perform many background tasks, like
# closing connections of clients in timeout, purging expired keys that are
# never requested, and so forth.
#
# Not all tasks are performed with the same frequency, but Redis checks for
# tasks to perform according to the specified "hz" value.
#
# By default "hz" is set to 10. Raising the value will use more CPU when
# Redis is idle, but at the same time will make Redis more responsive when
# there are many keys expiring at the same time, and timeouts may be
# handled with more precision.
#
# The range is between 1 and 500, however a value over 100 is usually not
# a good idea. Most users should use the default of 10 and raise this up to
# 100 only in environments where very low latency is required.
hz 10 # When a child rewrites the AOF file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
aof-rewrite-incremental-fsync yes

redis.conf

有问题请留言,暂时先写这么多。





上一篇:CentOS 7 安装配置 OpenVPN 客户端


下一篇:.net core 1.1.0 MVC 控制器接收Json字串 (JObject对象) (一)