Dump进程(任务)中的所有通信端口

//
//  main.m
//  MachPortDump
//
//  Created by haidragon on 2019/6/10.
//  Copyright © 2019 haidragon. All rights reserved.
//
//
//#import <Foundation/Foundation.h>
//
//int main(int argc, const char * argv[]) {
//    @autoreleasepool {
//        // insert code here...
//        NSLog(@"Hello, World!");
//    }
//    return 0;
//}
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdbool.h>
#include <sys/sysctl.h>
#include <servers/bootstrap.h>
#include <mach/mach.h>
#pragma mark ***** Compatibility Note
#pragma mark ***** The Code

static const char *gProgramName;

static void PrintPortSetMembers(mach_port_t taskSendRight, mach_port_name_t portSetName)
// For a given Mach port set within a given task, print the members
// of the port set.
{
    kern_return_t           err;
    kern_return_t           junk;
    mach_port_name_array_t  memberNames;
    mach_msg_type_number_t  memberNamesCount;
    mach_msg_type_number_t  memberIndex;

    memberNames = NULL;

    // Get an array of members.

    err = mach_port_get_set_status(
                                   taskSendRight,
                                   portSetName,
                                   &memberNames,
                                   &memberNamesCount
                                   );

    // Iterate over the array, printing each one.  Note that we print 6 members to
    // a line and we start every line except the second with enough spaces to
    // account for the information that we print that's common to each type
    // of output.

    if (err == KERN_SUCCESS) {
        fprintf(stdout, "    ");
        for (memberIndex = 0; memberIndex < memberNamesCount; memberIndex++) {
            if ( (memberIndex != 0) && (memberIndex % 6) == 0) {
                // 6 columns of (8 characters plus space)
                // plus DNR column (3 chars) plus space
                fprintf(stdout, "\n%*s    ", (6 * (8 + 1)) + 3 + 1, "");
            }
            fprintf(stdout, "%#8x ", memberNames[memberIndex]);
        }
    } else {
        fprintf(stdout, "??? ");
    }

    // Clean up.

    if (memberNames != NULL) {
        junk = vm_deallocate(mach_task_self(), (vm_address_t) memberNames, memberNamesCount * sizeof(*memberNames));
        assert(junk == KERN_SUCCESS);
    }
}

static void PrintPortReceiveStatus(mach_port_t taskSendRight, mach_port_name_t receiveRight)
// Print information about the Mach receive right in the specified
// task.
{
    kern_return_t           err;
    mach_port_status_t      status;
    mach_msg_type_number_t  statusCount;

    // Get information about the the right.

    statusCount = MACH_PORT_RECEIVE_STATUS_COUNT;
    err = mach_port_get_attributes(
                                   taskSendRight,
                                   receiveRight,
                                   MACH_PORT_RECEIVE_STATUS,
                                   (mach_port_info_t) &status,
                                   &statusCount
                                   );
    assert( (err != KERN_SUCCESS) || (statusCount == MACH_PORT_RECEIVE_STATUS_COUNT) );

    // Print it, as a group of flags followed by 6 columns of numbers,
    // which are basically all counters.

    if (err == KERN_SUCCESS) {
        fprintf(
                stdout,
                "%c%c%c ",
                (status.mps_nsrequest ? 'N' : '-'),
                (status.mps_pdrequest ? 'P' : '-'),
                (status.mps_srights   ? 'S' : '-')
                );

        fprintf(
                stdout,
                "%8u %8u %8u %8u %8u %8u",
                status.mps_seqno,
                status.mps_mscount,
                status.mps_qlimit,
                status.mps_msgcount,
                status.mps_sorights,
                status.mps_pset
                );
        // The kernel always sets mps_flags to 0, so we don't both printing it.
        assert(status.mps_flags == 0);
    } else {
        fprintf(
                stdout,
                "??? %8s %8s %8s %8s %8s %8s",
                "???", "???", "???", "???", "???", "???"
                );
    }
}

static kern_return_t PrintProcessPortSpace(pid_t pid, bool verbose)
// Prints port rights owned by the specified process.
{
    kern_return_t           err;
    kern_return_t           junk;
    mach_port_t             taskSendRight;
    mach_port_name_array_t    rightNames;
    mach_msg_type_number_t    rightNamesCount = 0;
    mach_port_type_array_t    rightTypes;
    mach_msg_type_number_t    rightTypesCount = 0;
    unsigned int            i;

    taskSendRight = MACH_PORT_NULL;
    rightNames    = NULL;
    rightTypes    = NULL;

    // Get the task control port for the process.

    err = task_for_pid(mach_task_self(), pid, &taskSendRight);
    if (err != KERN_SUCCESS) {
        fprintf(stderr, "%s: Could not attach to process %lld (%#08x).\n", gProgramName, (long long) pid, err);
    }

    // Get a snapshot of the port name space for the task.

    if (err == KERN_SUCCESS) {
        err = mach_port_names(taskSendRight, &rightNames, &rightNamesCount, &rightTypes, &rightTypesCount);
    }
    if (err == KERN_SUCCESS) {
        if ( rightNamesCount != rightTypesCount ) {
            fprintf(stderr, "%s: Count mismatch (%u/%u)\n", gProgramName, rightNamesCount, rightTypesCount);
            err = KERN_FAILURE;
        }
    }

    // Print that snapshot.

    if (err == KERN_SUCCESS) {
        fprintf(stdout, "    Name     Send  Receive SendOnce  PortSet DeadName DNR");
        if (verbose) {
            fprintf(stdout, " flg    seqno  mscount   qlimit msgcount sorights     pset");
        }
        fprintf(stdout, "\n");
        fprintf(stdout, "    ----     ----  ------- --------  ------- -------- ---");
        if (verbose) {
            fprintf(stdout, " ---    -----  -------   ------ -------- --------     ----");
        }
        fprintf(stdout, "\n");

        // For each name, print a reference count of each type of right.  If running
        // verbose, print other information as well.

        for (i = 0; i < rightNamesCount; i++) {
            mach_port_right_t     right;

            // We print the right name in hex because it makes it easier to
            // see the index and generation fields.  See <mach/port.h> for
            // information about this.

            fprintf(stdout, "%#8x ", rightNames[i]);

            for (right = MACH_PORT_RIGHT_SEND; right <= MACH_PORT_RIGHT_DEAD_NAME; right++) {
                mach_port_urefs_t     refCount;

                // If the rightTypes for this name has the bit associated
                // with this type of right set (that is, if the name
                // references this type of right), get the name's reference
                // for this right and print it.  Otherwise just print an
                // empty string to keep the columns lined up.

                if (rightTypes[i] & MACH_PORT_TYPE(right)) {

                    err = mach_port_get_refs(taskSendRight, rightNames[i], right, &refCount);
                    if (err == KERN_SUCCESS) {
                        fprintf(stdout, "%8d ", refCount);
                    } else {
                        fprintf(stdout, "%8s ", "???");
                    }
                } else {
                    fprintf(stdout, "%8s ", "");
                }
            }
            if ( rightTypes[i] & MACH_PORT_TYPE_DNREQUEST ) {
                fprintf(stdout, "yes ");
            } else {
                fprintf(stdout, "    ");
            }

            if (verbose) {
                if (rightTypes[i] & MACH_PORT_TYPE_PORT_SET) {
                    PrintPortSetMembers(taskSendRight, rightNames[i]);
                } else if (rightTypes[i] & MACH_PORT_TYPE_RECEIVE) {
                    PrintPortReceiveStatus(taskSendRight, rightNames[i]);
                }
            }
            fprintf(stdout, "\n");
        }
    }

    // Clean up.

    if (rightNames != NULL) {
        junk = vm_deallocate(mach_task_self(), (vm_address_t) rightNames, rightNamesCount * sizeof(*rightNames));
        assert(junk == KERN_SUCCESS);
    }
    if (rightTypes != NULL) {
        junk = vm_deallocate(mach_task_self(), (vm_address_t) rightTypes, rightTypesCount * sizeof(*rightTypes));
        assert(junk == KERN_SUCCESS);
    }
    if (taskSendRight != MACH_PORT_NULL) {
        junk = mach_port_deallocate(mach_task_self(), taskSendRight);
        assert(junk == KERN_SUCCESS);
    }

    return err;
}

typedef struct kinfo_proc kinfo_proc;

static int GetBSDProcessList(kinfo_proc **procList, size_t *procCount)
// Returns a list of all BSD processes on the system.  This routine
// allocates the list and puts it in *procList and a count of the
// number of entries in *procCount.  You are responsible for freeing
// this list (use "free" from System framework).
// On success, the function returns 0.
// On error, the function returns a BSD errno value.
{
    int                 err;
    kinfo_proc *        result;
    bool                done;
    static const int    name[] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0 };
    // Declaring name as const requires us to cast it when passing it to
    // sysctl because the prototype doesn't include the const modifier.
    size_t              length;

    assert( procList != NULL);
    assert(*procList == NULL);
    assert(procCount != NULL);

    *procCount = 0;

    // We start by calling sysctl with result == NULL and length == 0.
    // That will succeed, and set length to the appropriate length.
    // We then allocate a buffer of that size and call sysctl again
    // with that buffer.  If that succeeds, we're done.  If that fails
    // with ENOMEM, we have to throw away our buffer and loop.  Note
    // that the loop causes use to call sysctl with NULL again; this
    // is necessary because the ENOMEM failure case sets length to
    // the amount of data returned, not the amount of data that
    // could have been returned.

    result = NULL;
    done = false;
    do {
        assert(result == NULL);

        // Call sysctl with a NULL buffer.

        length = 0;
        err = sysctl( (int *) name, (sizeof(name) / sizeof(*name)) - 1,
                     NULL, &length,
                     NULL, 0);
        if (err == -1) {
            err = errno;
        }

        // Allocate an appropriately sized buffer based on the results
        // from the previous call.

        if (err == 0) {
            result = malloc(length);
            if (result == NULL) {
                err = ENOMEM;
            }
        }

        // Call sysctl again with the new buffer.  If we get an ENOMEM
        // error, toss away our buffer and start again.

        if (err == 0) {
            err = sysctl( (int *) name, (sizeof(name) / sizeof(*name)) - 1,
                         result, &length,
                         NULL, 0);
            if (err == -1) {
                err = errno;
            }
            if (err == 0) {
                done = true;
            } else if (err == ENOMEM) {
                assert(result != NULL);
                free(result);
                result = NULL;
                err = 0;
            }
        }
    } while (err == 0 && ! done);

    // Clean up and establish post conditions.

    if (err != 0 && result != NULL) {
        free(result);
        result = NULL;
    }
    *procList = result;
    if (err == 0) {
        *procCount = length / sizeof(kinfo_proc);
    }

    assert( (err == 0) == (*procList != NULL) );

    return err;
}

static int FindProcessByName(const char *processName, pid_t *pid)
// Find the process that best matches processName and return
// its PID.  It first tries to find an exact match; if that fails
// it tries to find a substring match; if that fails it checks
// whether processName is a number and returns that as the PID.
//
// On entry, processName must not be NULL, and it must not be the
// empty string.  pid must not be NULL.
// On success, *pid will be the process ID of the found process.
// On error, *pid is undefined.
{
    int             err;
    int             foundCount;
    kinfo_proc *    processList;
    size_t          processCount;
    size_t          processIndex;

    assert(processName != NULL);
    assert(processName[0] != 0);            // needed for strstr to behave
    assert(pid != NULL);

    processList = NULL;

    foundCount = 0;

    // Get the list of all processes.

    err = GetBSDProcessList(&processList, &processCount);

    if (err == 0) {

        // Search for an exact match.

        for (processIndex = 0; processIndex < processCount; processIndex++) {
            if ( strcmp(processList[processIndex].kp_proc.p_comm, processName) == 0 ) {
                *pid = processList[processIndex].kp_proc.p_pid;
                foundCount = 1;
                break;
            }
        }

        // If that failed, search for a substring match.

        if (foundCount == 0) {
            for (processIndex = 0; processIndex < processCount; processIndex++) {
                if ( strstr(processList[processIndex].kp_proc.p_comm, processName) != NULL ) {
                    *pid = processList[processIndex].kp_proc.p_pid;
                    foundCount += 1;
                }
            }
        }

        // If we found more than 1, that's ambiguous and we error out.

        if (foundCount > 1) {
            fprintf(stderr, "%s: '%s' does not denote a unique process.\n", gProgramName, processName);
            err = EINVAL;
        }
    }

    // If still not found, try processName as a PID.

    if ( (err == 0) && (foundCount == 0) ) {
        char *    firstInvalid;

        *pid = (pid_t) strtol(processName, &firstInvalid, 10);
        if ( (processName[0] == 0) || (*firstInvalid != 0) ) {
            err = EINVAL;
        }
    }

    free(processList);

    return err;
}

static void PrintUsage(void)
{
    fprintf(stderr, "usage: %s [options] [ [ pid | name ]... ]\n", gProgramName);
    fprintf(stderr, "       Send, Receive, SendOnce, PortSet, DeadName = right reference counts\n");
    fprintf(stderr, "       DNR = dead name request\n");
    fprintf(stderr, "       -w wide output, with lots of extra info\n");
    fprintf(stderr, "          flg      = N (no senders) P (port dead) S (send rights)\n");
    fprintf(stderr, "          seqno    = sequence number\n");
    fprintf(stderr, "          mscount  = make-send count\n");
    fprintf(stderr, "          qlimit   = queue limit\n");
    fprintf(stderr, "          msgcount = message count\n");
    fprintf(stderr, "          sorights = send-once right count\n");
    fprintf(stderr, "          pset     = port set count\n");
}

int main(int argc, char * argv[])
{
    kern_return_t         err = 0;
    bool                verbose;
    int                 ch;
    int                 argIndex;

    // Set gProgramName to the last path component of argv[0]

    gProgramName = strrchr(argv[0], '/');
    if (gProgramName == NULL) {
        gProgramName = argv[0];
    } else {
        gProgramName += 1;
    }

    // Parse our options.

    verbose = false;
    do {
        ch = getopt(argc, argv, "w");
        if (ch != -1) {
            switch (ch) {
                case 'w':
                verbose = true;
                break;
                case '?':
                default:
                PrintUsage();
                exit(EXIT_FAILURE);
                break;
            }
        }
    } while (ch != -1);

    // Handle the remaining arguments.  If none, we work against ourselves.
    // Otherwise each string is treated as a process name, and we look that
    // up using FindProcessByName.

    if (argv[optind] == NULL) {
        err = PrintProcessPortSpace(getpid(), verbose);
    } else {
        for (argIndex = optind; argIndex < argc; argIndex++) {
            pid_t   pid = 0;

            if (argIndex > optind) {
                fprintf(stdout, "\n");
            }
            if (argv[argIndex][0] == 0) {
                err = EINVAL;
            } else {
                err = FindProcessByName(argv[argIndex], &pid);
            }
            if (err == 0) {
                fprintf(stdout, "Mach ports for '%s' (%lld):\n", argv[argIndex], (long long) pid);
                fprintf(stdout, "\n");

                err = PrintProcessPortSpace(pid, verbose);
            }

            if (err != 0) {
                break;
            }
        }
    }

    if (err != 0) {
        fprintf(stderr, "%s: Failed with error %d.\n", gProgramName, err);
    }
    return (err == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}

Dump进程(任务)中的所有通信端口
Dump进程(任务)中的所有通信端口

上一篇:python在使用HTMLTestRunner时,报告为空,错误提示<_io.TextIOWrapper name='' mode='w


下一篇:~~网络编程(五):粘包现象~~