题目链接
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The
input contains several test cases. Every test case begins with a line
that contains a single integer n < 500,000 -- the length of the input
sequence. Each of the the following n lines contains a single integer 0
≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is
terminated by a sequence of length n = 0. This sequence must not be
processed.
input contains several test cases. Every test case begins with a line
that contains a single integer n < 500,000 -- the length of the input
sequence. Each of the the following n lines contains a single integer 0
≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is
terminated by a sequence of length n = 0. This sequence must not be
processed.
Output
For
every input sequence, your program prints a single line containing an
integer number op, the minimum number of swap operations necessary to
sort the given input sequence.
every input sequence, your program prints a single line containing an
integer number op, the minimum number of swap operations necessary to
sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
题目a[i]范围9e9+9,emmm,似乎会爆空间,似乎写过类似题,似乎必须离散化,似乎就这么写了。。。。。。
然后用树状数组解题并解出逆序数就...巴拉巴拉
/************************************************
┆ ┏┓ ┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃ ┃ ┆
┆┃ ━ ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃ ┃ ┆
┆┃ ┻ ┃ ┆
┆┗━┓ ┏━┛ ┆
┆ ┃ ┃ ┆
┆ ┃ ┗━━━┓ ┆
┆ ┃ AC代马 ┣┓┆
┆ ┃ ┏┛┆
┆ ┗┓┓┏━┳┓┏┛ ┆
┆ ┃┫┫ ┃┫┫ ┆
┆ ┗┻┛ ┗┻┛ ┆
************************************************ */
//#include<bits/stdc++.h>
#include <stdio.h>
#include <stdlib.h>
#include <cmath>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <string>
#include <ctype.h>
#include <map>
#include <vector>
#include <set>
using namespace std;
const int maxn=5e5+;
int Tree[maxn],b[maxn];
struct node
{
int val,pos;
}a[maxn];
bool cmp(node x,node y)
{
return x.val<y.val;
}
inline int lowbit(int x) //计算2^k
{
return (x&-x);
}
void add(int x,int value)
{
for(int i=x; i<maxn; i+=lowbit(i))
Tree[i]+=value;
}
int get(int x)
{
int sum=;
for(int i=x; i>; i-=lowbit(i))
sum+=Tree[i];
return sum;
}
int main()
{
int n;
while(~scanf("%d",&n)&&n)
{
memset(Tree,,sizeof(Tree));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i].val);;
a[i].pos=i;
}
sort(a+,a+n+,cmp);
for(int i=;i<=n;i++) b[a[i].pos]=i;
long long ans=;
for(int i=;i<=n;i++)
{
add(b[i],);
ans+=i-get(b[i]);
}
printf("%I64d\n",ans);
}
return ;
}