Time Limit: 1000MS | Memory Limit: 32768KB | 64bit IO Format: %I64d & %I64u |
Description
给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数。例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是xiaobo希望你输出 C(n,m) mod p的值!
Input
输入数据第一行是一个正整数T,表示数据组数 (T <= 100) 接下来是T组数据,每组数据有3个正整数 n, m, p (1 <= m <= n <= 10^9, m <= 10^4, m < p < 10^9, p是素数)
Output
对于每组数据,输出一个正整数,表示C(n,m) mod p的结果。
Sample Input
2
5 2 3
5 2 61
Sample Output
1
10
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define ll long long
ll power(ll x,ll y)
{
ll p=y+,ans=;
while(y)
{
if(y&)
ans=(ans*x)%p;
x=(x*x)%p;
y>>=;
}
return ans;
}
ll c(ll n,ll m,ll p)
{
if(m>n)return ;
ll size=min(m,n-m),i,ans=;
for(i=;i<=size;i++)
ans=ans*((n-i+)*power(i,p-)%p)%p;
return ans;
}
ll solve(ll n,ll m,ll p)
{
if(m==)return ;
return (c(n%p,m%p,p)*solve(n/p,m/p,p))%p;
}
int main()
{
int t;
scanf("%d",&t);
ll n,m,p;
while(t--)
{
scanf("%I64d%I64d%I64d",&n,&m,&p);
printf("%I64d\n",solve(n,m,p));
}
}
这个问题有个叫做Lucas的定理,定理描述是,如果
那么得到
这样然后分别求,采用逆元计算即可。