Hive SQL

文章目录

Hive SQL

表类型

Hive 内部表

CREATE TABLE [IF NOT EXISTS] table_name

删除表时,元数据与数据都会被删除

Hive 外部表

CREATE EXTERNAL TABLE [IF NOT EXISTS] table_name LOCATION hdfs_path
location后面只能是hdfs路径,不能是文件

删除外部表只删除metastore中的元数据信息,不会删除hdfs中表数据

create external table demo1
(
id int,
name string,
likes array<string>,
address map<string,string>
)
row format delimited
fields terminated by ','
collection items terminated by '-'
map keys terminated by ':'
location '/usr/';

快速建表

Create Table Like

#只复制表结构
CREATE TABLE empty_key_value_store LIKE key_value_store;

Create Table As Select (CTAS)

#复制结构和数据
CREATE TABLE new_key_value_store 
      AS
    SELECT columA, columB FROM key_value_store;

修改表

ALTER TABLE name RENAME TO new_name
ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...])
ALTER TABLE name DROP [COLUMN] column_name
ALTER TABLE name CHANGE column_name new_name new_type
ALTER TABLE name REPLACE COLUMNS (col_spec[, col_spec ...])

查看表信息

desc table_name;
#查看更详细的信息
desc formatted table_name;

静态分区

分区信息是储存在元数据表中的

创建分区表

create table demo2
(
id int,
name string,
likes array<string>,
address map<string,string>
)
partitioned by(age int,sex string)
row format delimited 
fields terminated by ','
collection items terminated by '-'
map keys terminated by ':';

添加分区

#(表已创建,在此基础上添加分区):
ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION partition_spec  [LOCATION 'location1'] partition_spec [LOCATION 'location2'] ...;

alter table demo3 add if not exists partition(month_id='201805',day_id='20180509') location '/user/tuoming/part/201805/20180509';

删除分区

内部表中对应的元数据和数据将被一并删除

ALTER TABLE table_name DROP partition_spec, partition_spec,...
ALTER TABLE day_hour_table DROP PARTITION (dt='2008-08-08', hour='09');

向指定分区添加数据

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)] 
LOAD DATA INPATH '/user/pv.txt' INTO TABLE day_hour_table PARTITION(dt='2008-08- 08', hour='08'); 
LOAD DATA local INPATH '/user/hua/*' INTO TABLE day_hour partition(dt='2010-07- 07');

当数据被加载至表中时,不会对数据进行任何转换。Load操作只是将数据复制至Hive表对应的位置。数据加载时在表下自动创建一个目录

查看分区

show partitions table_name

查询执行分区语法

SELECT day_table.* FROM day_table WHERE day_table.dt>= '2008-08-08'; 

分区表的意义在于优化查询。查询时尽量利用分区字段。如果不使用分区字段,就会全部扫描

外部表预先导入分区操作,但是数据无法识别怎么做

Msck repair table tablename

或者使用add partition 直接添加分区

动态分区

静态分区与动态分区的主要区别在于静态分区是手动指定,而动态分区是通过数据来进行判断。详细来说,静态分区的列实在编译时期,通过用户传递来决定的;动态分区只有在SQL执行时才能决定

动态分区是需要执行MapReduce的

开启支持动态分区

set hive.exec.dynamic.partition=true;

默认:true

set hive.exec.dynamic.partition.mode=nostrict;

默认:strict(至少有一个分区列是静态分区)

  1. 先创建一个原始数据表
#先创建一个原始表
create table t_original(
    id int,
    age int,
    sex string,
name string,
likes array<string>,
address map<string,string>
)
row format delimited
fields terminated by ','
collection items terminated by '-'
map keys terminated by ':';

本地的数据文件为

2,13,female,小明2,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
3,12,male,小明3,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
4,13,female,小明4,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
5,12,male,小明5,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
6,13,female,小明6,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
7,12,male,小明7,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
8,13,female,小明8,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
9,12,female,小明9,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
10,13,male,小明10,lol-book-moive,zhejiang:hangzhou-shanghai:pudong

将数据导入到原始表中

load data local inpath '/var/demo.txt' into table t_original;

创建分区表

create table t_dynamic(
    id int,
name string,
likes array<string>,
address map<string,string>
)
partitioned by (age int,sex string)
row format delimited
fields terminated by ','
collection items terminated by '-'
map keys terminated by ':';

加载数据到分区表

 from t_original
 insert into t_dynamic partition(age,sex)
 select id,name,likes,address,age,sex;

插入数据

加载本地或者hdfs表文件

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]

表到表

FROM from_statement 
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] 
select_statement1 
[INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] 
select_statement2] 
[INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2] ...;
FROM psn
INSERT OVERWRITE TABLE psn10
SELECT id,name
insert into psn11
select id,likes 

表到本地表

insert overwrite local directory '/root/result' 
select * from psn;

分桶

开启分桶

(我的hive3.1 已经没有下面这个参数了,旧版本会有)

set hive.enforce.bucketing=true;
默认:false;设置为true之后,mr运行时会根据bucket的个数自动分配reduce task个数。(用户也可以通过mapred.reduce.tasks自己设置reduce任务个数,但分桶时不推荐使用)
注意:一次作业产生的桶(文件数量)和reduce task个数一致。

创建一个分桶表

create table t_bucket(
    id int,
name string,
likes array<string>,
address map<string,string>
)
clustered by(id) into 4 buckets
row format delimited
fields terminated by ','
collection items terminated by '-'
map keys terminated by ':';

向表中插入数据

insert into t_bucket select id,name,likes,address from t_origin;

可在dfs中查看分桶表,也可 desc formatted t_bucket查看信息

桶表的抽样查询

TABLESAMPLE语法:

TABLESAMPLE(BUCKET x OUT OF y)

x:表示从哪个bucket开始抽取数据

y:必须为该表总bucket数的倍数或因子

桶:32

select * from table_name

TABLESAMPLE(BUCKET 3 OUT OF 16 ON id)取出哪个桶数据:

3,19

公式:用桶总数/y

Hive 正则

有个日志文件是这样的

192.168.57.4 - - [29/Feb/2016:18:14:35 +0800] "GET /bg-upper.png HTTP/1.1" 304 -
192.168.57.4 - - [29/Feb/2016:18:14:35 +0800] "GET /bg-nav.png HTTP/1.1" 304 -
192.168.57.4 - - [29/Feb/2016:18:14:35 +0800] "GET /asf-logo.png HTTP/1.1" 304 -
192.168.57.4 - - [29/Feb/2016:18:14:35 +0800] "GET /bg-button.png HTTP/1.1" 304 -
192.168.57.4 - - [29/Feb/2016:18:14:35 +0800] "GET /bg-middle.png HTTP/1.1" 304 -
192.168.57.4 - - [29/Feb/2016:18:14:36 +0800] "GET / HTTP/1.1" 200 11217
192.168.57.4 - - [29/Feb/2016:18:14:36 +0800] "GET / HTTP/1.1" 200 11217

创建匹配表

#创建表
 CREATE TABLE logtb1 (
    host STRING,
    identity STRING,
    t_user STRING,
    time1 STRING,
    request STRING,
    referer STRING,
    agent STRING)
  ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
  WITH SERDEPROPERTIES (
    "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) \\[(.*)\\] \"(.*)\" (-|[0-9]*) (-|[0-9]*)"
  )
  STORED AS TEXTFILE;

将数据加载进logtb1中

load data local inpath '/usr/local/log.txt'  into table logtb1;

LATERAL VIEW

Lateral View用于和UDTF函数(explode、split)结合来使用。

首先通过UDTF函数拆分成多行,再将多行结果组合成一个支持别名的虚拟表。

**主要解决 ** 在select使用UDTF做查询过程中,查询只能包含单个UDTF,不能包含其他字段、以及多个UDTF的问题

语法:

LATERAL VIEW udtf(expression) tableAlias AS columnAlias (’,’ columnAlias)

数据表person(id int ,name string,likes array,map<string,string>)

1,小明1,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
2,小明2,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
3,小明3,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
4,小明4,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
5,小明5,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
7,小明1,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
8,小明2,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
9,小明3,lol-book-moive,zhejiang:hangzhou-shanghai:pudong
10,小明4,lol-book-moive,zhejiang:hangzhou-shanghai:pudong

查询共有多少种爱好,多少城市

select count(distinct(myCol1)), count(distinct(myCol2)) from person 
LATERAL VIEW explode(likes) myTable1 AS myCol1 
LATERAL VIEW explode(address) myTable2 AS myCol2, myCol3

LATERAL VIEW OUTER

还有一种情况,如果UDTF转换的Array是空的怎么办呢?

在Hive0.12里面会支持outer关键字,如果UDTF的结果是空,默认会被忽略输出。

如果加上outer关键字,则会像left outer join 一样,还是会输出select出的列,而UDTF的输出结果是NULL

select * from person lateral view explode(array())test as t1;

这样什么数据也查不出来

然后加上outer关键字

select * from person lateral view outer explode(array())test as t1;

输出:

2       小明2   ["lol","book","moive"]  {"zhejiang":"hangzhou","shanghai":"pudong"}     NULL
3       小明3   ["lol","book","moive"]  {"zhejiang":"hangzhou","shanghai":"pudong"}     NULL
4       小明4   ["lol","book","moive"]  {"zhejiang":"hangzhou","shanghai":"pudong"}     NULL
5       小明5   ["lol","book","moive"]  {"zhejiang":"hangzhou","shanghai":"pudong"}     NULL
6       小明6   ["lol","book","moive"]  {"zhejiang":"hangzhou","shanghai":"pudong"}     NULL
7       小明7   ["lol","book","moive"]  {"zhejiang":"hangzhou","shanghai":"pudong"}     NULL
8       小明8   ["lol","book","moive"]  {"zhejiang":"hangzhou","shanghai":"pudong"}     NULL
9       小明9   ["lol","book","moive"]  {"zhejiang":"hangzhou","shanghai":"pudong"}     NULL
10      小明10  ["lol","book","moive"]  {"zhejiang":"hangzhou","shanghai":"pudong"}     NULL
上一篇:vue3 动态修改 keepAlive


下一篇:4个实验,彻底搞懂TCP连接的断开