HDU 4998 Rotate

题意:

n次旋转  每次平面绕ai点旋转pi弧度  问  最后状态相当于初始状态绕A点旋转P弧度  A和P是多少

思路:

如果初始X点的最后状态为X‘点  则圆心一定在X和X'连线的垂直平分线上  那么仅仅要用在取一个点Y和Y'  相同做它的垂直平分线  两线交点即是圆心  然后用简单几何方法算出角度  最后注意要求最后状态由最初状态逆时针旋转得到  适当调整角度就可以

PS:

kuangbin巨巨的几何代码还是非常easy理解的  非常好用~  谢谢~

代码:

#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<cassert>
using namespace std;
typedef long long LL;
#define Q 401
#define N 51
#define M 200001
#define inf 2147483647
#define lowbit(x) (x&(-x)) const double eps = 1e-5;
const double PI = acos(-1.0); int sgn(double x) {
if (fabs(x) < eps)
return 0;
if (x < 0)
return -1;
else
return 1;
} struct Point {
double x, y;
Point() {
}
Point(double _x, double _y) {
x = _x;
y = _y;
}
Point operator +(const Point &b) const {
return Point(x + b.x, y + b.y);
}
Point operator -(const Point &b) const {
return Point(x - b.x, y - b.y);
}
//叉积
double operator ^(const Point &b) const {
return x * b.y - y * b.x;
}
//点积
double operator *(const Point &b) const {
return x * b.x + y * b.y;
}
//绕原点逆时针旋转角度B(弧度值)。后x,y的变化
void transXY(double B) {
double tx = x, ty = y;
x = tx * cos(B) - ty * sin(B);
y = tx * sin(B) + ty * cos(B);
}
} a1, a2, b1, b2, f1, f2, f3;
struct Line {
Point s, e;
Line() {
}
Line(Point _s, Point _e) {
s = _s;
e = _e;
}
//两直线相交求交点
//第一个值为0表示直线重合,为1表示平行,为2是相交
//仅仅有第一个值为2时。交点才有意义
pair<int, Point> operator &(const Line &b) const {
Point res = s;
if (sgn((s - e) ^ (b.s - b.e)) == 0) {
if (sgn((s - b.e) ^ (b.s - b.e)) == 0)
return make_pair(0, res); //重合
else
return make_pair(1, res); //平行
}
double t = ((s - b.s) ^ (b.s - b.e)) / ((s - e) ^ (b.s - b.e));
res.x += (e.x - s.x) * t;
res.y += (e.y - s.y) * t;
return make_pair(2, res);
}
} l1, l2; //两点间距离
double dist(Point a, Point b) {
return sqrt((a - b) * (a - b));
} int t, n; int main() {
int i;
double x, y, z;
scanf("%d", &t);
while (t--) {
a1 = f1 = Point(5e5, 3e5);
a2 = f2 = Point(1e5, 6e5);
scanf("%d", &n);
for (i = 1; i <= n; i++) {
scanf("%lf%lf%lf", &x, &y, &z);
f3 = Point(x, y);
f1 = f1 - f3;
f2 = f2 - f3;
f1.transXY(z);
f2.transXY(z);
f1 = f1 + f3;
f2 = f2 + f3;
}
b1 = a1 + f1;
b1.x /= 2;
b1.y /= 2;
b2 = f1;
b2 = b2 - b1;
b2.transXY(PI / 2);
b2 = b2 + b1;
l1 = Line(b1, b2);
b1 = a2 + f2;
b1.x /= 2;
b1.y /= 2;
b2 = f2;
b2 = b2 - b1;
b2.transXY(PI / 2);
b2 = b2 + b1;
l2 = Line(b1, b2);
pair<int, Point> res = l1 & l2;
i = res.first;
f3 = res.second;
assert(i == 2);
printf("%f %f ", f3.x, f3.y);
f2 = f1 + a1;
f2.x /= 2;
f2.y /= 2;
x = atan(dist(f1, f2) / dist(f2, f3)) * 2;
y = PI + PI;
while (x > y)
x -= y;
while (x < 0)
x += y;
a1 = a1 - f3;
a1.transXY(x);
a1 = a1 + f3;
a1 = a1 - f1;
if (sgn(a1.x) || sgn(a1.y))
x = PI + PI - x;
printf("%f\n", x);
}
return 0;
}
上一篇:深入浅出Java垃圾回收机制(一)(转载)


下一篇:使用nuget打包类库并发布