搞懂ConcurrentHashMap

构造函数

     /**
         * Creates a new, empty map with an initial table size based on
         * the given number of elements ({@code initialCapacity}), table
         * density ({@code loadFactor}), and number of concurrently
         * updating threads ({@code concurrencyLevel}).
         *
         * @param initialCapacity the initial capacity. The implementation
         * performs internal sizing to accommodate this many elements,
         * given the specified load factor.
         * @param loadFactor the load factor (table density) for
         * establishing the initial table size
         * @param concurrencyLevel the estimated number of concurrently
         * updating threads. The implementation may use this value as
         * a sizing hint.
         * @throws IllegalArgumentException if the initial capacity is
         * negative or the load factor or concurrencyLevel are
         * nonpositive
         */
        public ConcurrentHashMap(int initialCapacity,
                                 float loadFactor, int concurrencyLevel) {
            if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
                throw new IllegalArgumentException();
            if (initialCapacity < concurrencyLevel)   // Use at least as many bins
                initialCapacity = concurrencyLevel;   // as estimated threads
            long size = (long)(1.0 + (long)initialCapacity / loadFactor);
            int cap = (size >= (long)MAXIMUM_CAPACITY) ?
                MAXIMUM_CAPACITY : tableSizeFor((int)size);
            this.sizeCtl = cap;
        }

传入的initialCapacity就真的是map可用的size,即扩容门槛,总容量根据负载因子计算。与hashmap传入的总容量计算可用容量不同
基本跟hashMap差不多,介绍sizeCtl

不同状态,sizeCtl所代表的含义也有所不同。
未初始化:sizeCtl=0:表示没有指定初始容量。sizeCtl>0:表示初始容量。
初始化中:sizeCtl=-1,标记作用,告知其他线程,正在初始化
正常状态:sizeCtl=0.75n,扩容阈值
扩容中:sizeCtl < 0 : 表示有其他线程正在执行扩容
sizeCtl = (resizeStamp(n) << RESIZE_STAMP_SHIFT)+2 表示此时只有一个线程在执行扩容

putVal

 /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

第一次进入initTable

 /**
     * Initializes table, using the size recorded in sizeCtl.
     */
    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

while中循环设置sizeCtl并初始化数组
如果sizeCtl<0 说明其他线程已经在初始化,说明本线程不需要再初始化,Thread.yield();暂时让出cpu。从新获得cpu后再检测是不是已经初始化完毕
如果不小于0 ,sizeCtl>0表示初始容量。 设置成-1,向其他线程说明自己已经在初始化
初始化完毕之后再把sizeCtl设置大于0,sizeCtl变为原来的四分之三
sizeCtl在初始化后存储的是扩容门槛;
扩容门槛写死的是桶数组大小的0.75倍,桶数组大小即map的容量,也就是最多存储多少个元素。

 tabAt(tab, i = (n - 1) & hash)
   static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }

getObjectVolatile#

  • public native Object getObjectVolatile(Object o, long offset);

此方法和上面的getObject功能类似,不过附加了’volatile’加载语义,也就是强制从主存中获取属性值。类似的方法有getIntVolatile、getDoubleVolatile等等。这个方法要求被使用的属性被volatile修饰,否则功能和getObject方法相同。

如果数组上的位置还是空,cas在数组上设置值

   if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                 

如果不为空,需要放入链表或者红黑树

   V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
  1. 锁头节点
  2. 在链表上找到相等值,替换,否则尾插
  3. 链表长超过8,treeifyBin

treeifyBin

  /**
     * Replaces all linked nodes in bin at given index unless table is
     * too small, in which case resizes instead.
     */
    private final void treeifyBin(Node<K,V>[] tab, int index) {
        Node<K,V> b; int n, sc;
        if (tab != null) {
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                tryPresize(n << 1);
            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                synchronized (b) {
                    if (tabAt(tab, index) == b) {
                        TreeNode<K,V> hd = null, tl = null;
                        for (Node<K,V> e = b; e != null; e = e.next) {
                            TreeNode<K,V> p =
                                new TreeNode<K,V>(e.hash, e.key, e.val,
                                                  null, null);
                            if ((p.prev = tl) == null)
                                hd = p;
                            else
                                tl.next = p;
                            tl = p;
                        }
                        setTabAt(tab, index, new TreeBin<K,V>(hd));
                    }
                }
            }
        }
    }

如果tab数组长度小于64,先尝试扩容,如果满足转成红黑树

  1. 遍历链表,放入节点为TreeNode的链表
  2. new TreeBin<K,V>(hd)转为红黑树
  3. TreeBin构造中先按照二叉查找树构建,然后再_balanceInsertion进行平衡_

每次添加元素后,元素数量加1,并判断是否达到扩容门槛,达到了则进行扩容或协助扩容。

addCount

private final void addCount(long x, int check) {
    CounterCell[] as; long b, s;
    // 把数组的大小存储根据不同的线程存储到不同的段上(也是分段锁的思想)
    // 并且有一个baseCount,优先更新baseCount,如果失败了再更新不同线程对应的段
    // 这样可以保证尽量小的减少冲突

    // 先尝试把数量加到baseCount上,如果失败再加到分段的CounterCell上
    if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        CounterCell a; long v; int m;
        boolean uncontended = true;
        // 如果as为空
        // 或者长度为0
        // 或者当前线程所在的段为null
        // 或者在当前线程的段上加数量失败
        if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                        U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
            // 强制增加数量(无论如何数量是一定要加上的,并不是简单地自旋)
            // 不同线程对应不同的段都更新失败了
            // 说明已经发生冲突了,那么就对counterCells进行扩容
            // 以减少多个线程hash到同一个段的概率
            fullAddCount(x, uncontended);
            return;
        }
        if (check <= 1)
            return;
        // 计算元素个数 ,baseCount + 不同线程上加的count
        s = sumCount();
    }
    if (check >= 0) {
        Node<K,V>[] tab, nt; int n, sc;
        // 如果元素个数达到了扩容门槛,则进行扩容
        // 注意,正常情况下sizeCtl存储的是扩容门槛,即容量的0.75倍
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                (n = tab.length) < MAXIMUM_CAPACITY) {
            // rs是扩容时的一个邮戳标识
            int rs = resizeStamp(n);
            if (sc < 0) {
                // sc<0说明正在扩容中
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                    // 扩容已经完成了,退出循环
                    // 正常应该只会触发nextTable==null这个条件,其它条件没看出来何时触发
                    break;

                // 扩容未完成,则当前线程加入迁移元素中
                // 并把扩容线程数加1
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                    (rs << RESIZE_STAMP_SHIFT) + 2))
                // 这里是触发扩容的那个线程进入的地方
                // sizeCtl的高16位存储着rs这个扩容邮戳
                // sizeCtl的低16位存储着扩容线程数加1,即(1+nThreads)
                // 所以官方说的扩容时sizeCtl的值为 -(1+nThreads)是错误的

                // 进入迁移元素
                transfer(tab, null);
            // 重新计算元素个数
            s = sumCount();
        }
    }
}

(1)元素个数的存储方式类似于LongAdder类,存储在不同的段上,减少不同线程同时更新size时的冲突;
(2)计算元素个数时把这些段的值及baseCount相加算出总的元素个数;
(3)正常情况下sizeCtl存储着扩容门槛,扩容门槛为容量的0.75倍;
(4)扩容时sizeCtl高位存储扩容邮戳(resizeStamp),低位存储扩容线程数加1(1+nThreads);
(5)其它线程添加元素后如果发现存在扩容,也会加入的扩容行列中来;

transfer 扩容

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    if (nextTab == null) {            // initiating
        // 如果nextTab为空,说明还没开始迁移
        // 就新建一个新桶数组
        try {
            // 新桶数组是原桶的两倍
            @SuppressWarnings("unchecked")
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        transferIndex = n;
    }
    // 新桶数组大小
    int nextn = nextTab.length;
    // 新建一个ForwardingNode类型的节点,并把新桶数组存储在里面
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        // 整个while循环就是在算i的值,过程太复杂,不用太关心
        // i的值会从n-1依次递减,感兴趣的可以打下断点就知道了
        // 其中n是旧桶数组的大小,也就是说i从15开始一直减到1这样去迁移元素
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)
                advance = false;
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                    (this, TRANSFERINDEX, nextIndex,
                            nextBound = (nextIndex > stride ?
                                    nextIndex - stride : 0))) {
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        if (i < 0 || i >= n || i + n >= nextn) {
            // 如果一次遍历完成了
            // 也就是整个map所有桶中的元素都迁移完成了
            int sc;
            if (finishing) {
                // 如果全部迁移完成了,则替换旧桶数组
                // 并设置下一次扩容门槛为新桶数组容量的0.75倍
                nextTable = null;
                table = nextTab;
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                // 当前线程扩容完成,把扩容线程数-1
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    // 扩容完成两边肯定相等
                    return;
                // 把finishing设置为true
                // finishing为true才会走到上面的if条件
                finishing = advance = true;
                // i重新赋值为n
                // 这样会再重新遍历一次桶数组,看看是不是都迁移完成了
                // 也就是第二次遍历都会走到下面的(fh = f.hash) == MOVED这个条件
                i = n; // recheck before commit
            }
        }
        else if ((f = tabAt(tab, i)) == null)
            // 如果桶中无数据,直接放入ForwardingNode标记该桶已迁移
            advance = casTabAt(tab, i, null, fwd);
        else if ((fh = f.hash) == MOVED)
            // 如果桶中第一个元素的hash值为MOVED
            // 说明它是ForwardingNode节点
            // 也就是该桶已迁移
            advance = true; // already processed
        else {
            // 锁定该桶并迁移元素
            synchronized (f) {
                // 再次判断当前桶第一个元素是否有修改
                // 也就是可能其它线程先一步迁移了元素
                if (tabAt(tab, i) == f) {
                    // 把一个链表分化成两个链表
                    // 规则是桶中各元素的hash与桶大小n进行与操作
                    // 等于0的放到低位链表(low)中,不等于0的放到高位链表(high)中
                    // 其中低位链表迁移到新桶中的位置相对旧桶不变
                    // 高位链表迁移到新桶中位置正好是其在旧桶的位置加n
                    // 这也正是为什么扩容时容量在变成两倍的原因
                    Node<K,V> ln, hn;
                    if (fh >= 0) {
                        // 第一个元素的hash值大于等于0
                        // 说明该桶中元素是以链表形式存储的
                        // 这里与HashMap迁移算法基本类似
                        // 唯一不同的是多了一步寻找lastRun
                        // 这里的lastRun是提取出链表后面不用处理再特殊处理的子链表
                        // 比如所有元素的hash值与桶大小n与操作后的值分别为 0 0 4 4 0 0 0
                        // 则最后后面三个0对应的元素肯定还是在同一个桶中
                        // 这时lastRun对应的就是倒数第三个节点
                        // 至于为啥要这样处理,应该是为了减少遍历节点个数
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        // 看看最后这几个元素归属于低位链表还是高位链表
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        // 遍历链表,把hash&n为0的放在低位链表中
                        // 不为0的放在高位链表中
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        // 低位链表的位置不变
                        setTabAt(nextTab, i, ln);
                        // 高位链表的位置是原位置加n
                        setTabAt(nextTab, i + n, hn);
                        // 标记当前桶已迁移
                        setTabAt(tab, i, fwd);
                        // advance为true,返回上面进行--i操作
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
                        // 如果第一个元素是树节点
                        // 也是一样,分化成两颗树
                        // 也是根据hash&n为0放在低位树中
                        // 不为0放在高位树中
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        // 遍历整颗树,根据hash&n是否为0分化成两颗树
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        // 如果分化的树中元素个数小于等于6,则退化成链表
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        // 低位树的位置不变
                        setTabAt(nextTab, i, ln);
                        // 高位树的位置是原位置加n
                        setTabAt(nextTab, i + n, hn);
                        // 标记该桶已迁移
                        setTabAt(tab, i, fwd);
                        // advance为true,返回上面进行--i操作
                        advance = true;
                    }
                }
            }
        }
    }
}

(1)新桶数组大小是旧桶数组的两倍;
(2)迁移元素先从靠后的桶开始;
(3)迁移完成的桶在里面放置一ForwardingNode类型的元素,标记该桶迁移完成;
(4)迁移时根据hash&n是否等于0把桶中元素分化成两个链表或树;
(5)低位链表(树)存储在原来的位置;
(6)高们链表(树)存储在原来的位置加n的位置;
(7)迁移元素时会锁住当前桶,也是分段锁的思想;

tryPresize

看回之前的 treeifyBin 当map的length不足64时,扩容,而不是转化成红黑树

 private final void tryPresize(int size) {
 //如果大小为MAXIMUM_CAPACITY最大总量的一半,那么直接扩容为MAXIMUM_CAPACITY,否则计算最小幂次方
        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
            tableSizeFor(size + (size >>> 1) + 1);
        int sc;
          //如果sizeCtl为正数或0
        while ((sc = sizeCtl) >= 0) {
            Node<K,V>[] tab = table; int n;
             //如果table还未进行初始化
            if (tab == null || (n = tab.length) == 0) {
                n = (sc > c) ? sc : c;
                 //cas修改sizeCtl为-1,表示table正在进行初始化
                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                    try {
                     //确认其他线程没有对table修改
                        if (table == tab) {
                            @SuppressWarnings("unchecked")
                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                            table = nt;
                            //0.75*n
                            sc = n - (n >>> 2);
                        }
                    } finally {
                        sizeCtl = sc;
                    }
                }
            }
             //如果扩容大小没有达到阈值,或者超过最大容量
            else if (c <= sc || n >= MAXIMUM_CAPACITY)
                break;
            else if (tab == table) {
             /**生成表的生成戳,每个n都有不同的生成戳
             * static final int resizeStamp(int n) {
             *   return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
             *    }
             *   Integer.numberOfLeadingZeros(n)在指定 int 值的二进制补码表示形式中最高位(最左边)的 1 位之前,返回零位的数量
             * 例如 n为16 0001 0000 则Integer.numberOfLeadingZeros(n)为27,因为n为2的幂次方,因此不同的n此结果也不同
             * 然后与(1 << (RESIZE_STAMP_BITS - 1)) | ,相当于2^15 | n中0的个数。
             * (因此其左移16位后符号位为1,结果肯定是个负数)
             */
                int rs = resizeStamp(n);
                if (sc < 0) {
                    Node<K,V>[] nt;
                    /**1.第一个判断 sc右移RESIZE_STAMP_SHIFT位,也就是比较高ESIZE_STAMP_BITS位生成戳和rs是否相等
                    * 相等则代表是同一个n,是在同一容量下进行的扩容,
                    *  2.第二个和第三个判断 判断当前帮助扩容线程数是否已达到MAX_RESIZERS最大扩容线程数
                    *  3.第四个和第五个判断 为了确保transfer()方法初始化完毕
                    */
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                 /**如果没有线程在进行扩容,那么cas修改sizeCtl值,作为扩容的发起,rs左移RESIZE_STAMP_SHIFT位+2
                 * 上面说了,左移RESIZE_STAMP_SHIFT位,肯定是个负数,代表有一个线程正在进行扩容
                 * 此时sizeCtl高RESIZE_STAMP_BITS位为生成戳,低RESIZE_STAMP_SHIFT位为扩容线程数
                 */
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
            }
        }
    }

get

/**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code key.equals(k)},
     * then this method returns {@code v}; otherwise it returns
     * {@code null}.  (There can be at most one such mapping.)
     *
     * @throws NullPointerException if the specified key is null
     */
    public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

看find方法
搞懂ConcurrentHashMap

如果时 TreeBin,按照红黑树的方式查找

        final Node<K,V> find(int h, Object k) {
            if (k != null) {
                for (Node<K,V> e = first; e != null; ) {
                    int s; K ek;
                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
                        if (e.hash == h &&
                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
                            return e;
                        e = e.next;
                    }
                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
                                                 s + READER)) {
                        TreeNode<K,V> r, p;
                        try {
                            p = ((r = root) == null ? null :
                                 r.findTreeNode(h, k, null));
                        } finally {
                            Thread w;
                            if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
                                (READER|WAITER) && (w = waiter) != null)
                                LockSupport.unpark(w);
                        }
                        return p;
                    }
                }
            }
            return null;
        }

如果是FowardingNode

      Node<K,V> find(int h, Object k) {
            // loop to avoid arbitrarily deep recursion on forwarding nodes
            outer: for (Node<K,V>[] tab = nextTable;;) {
                Node<K,V> e; int n;
                if (k == null || tab == null || (n = tab.length) == 0 ||
                    (e = tabAt(tab, (n - 1) & h)) == null)
                    return null;
                for (;;) {
                    int eh; K ek;
                    if ((eh = e.hash) == h &&
                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
                        return e;
                    if (eh < 0) {
                        if (e instanceof ForwardingNode) {
                            tab = ((ForwardingNode<K,V>)e).nextTable;
                            continue outer;
                        }
                        else
                            return e.find(h, k);
                    }
                    if ((e = e.next) == null)
                        return null;
                }
            }
        }
    }

FowardingNode中存储了 nextTable,取出到nextTable寻找数据,nextTable在扩容时,nextTable不为空。扩容完成后nextTable覆盖table,并将nextTable重置为null

remove

/**
     * Implementation for the four public remove/replace methods:
     * Replaces node value with v, conditional upon match of cv if
     * non-null.  If resulting value is null, delete.
     */
    final V replaceNode(Object key, V value, Object cv) {
        int hash = spread(key.hashCode());
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0 ||
                (f = tabAt(tab, i = (n - 1) & hash)) == null)
                break;
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                boolean validated = false;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            validated = true;
                            for (Node<K,V> e = f, pred = null;;) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    V ev = e.val;
                                    if (cv == null || cv == ev ||
                                        (ev != null && cv.equals(ev))) {
                                        oldVal = ev;
                                        if (value != null)
                                            e.val = value;
                                        else if (pred != null)
                                            pred.next = e.next;
                                        else
                                            setTabAt(tab, i, e.next);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null)
                                    break;
                            }
                        }
                        else if (f instanceof TreeBin) {
                            validated = true;
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> r, p;
                            if ((r = t.root) != null &&
                                (p = r.findTreeNode(hash, key, null)) != null) {
                                V pv = p.val;
                                if (cv == null || cv == pv ||
                                    (pv != null && cv.equals(pv))) {
                                    oldVal = pv;
                                    if (value != null)
                                        p.val = value;
                                    else if (t.removeTreeNode(p))
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                if (validated) {
                    if (oldVal != null) {
                        if (value == null)
                            addCount(-1L, -1);
                        return oldVal;
                    }
                    break;
                }
            }
        }
        return null;
    }

整体逻辑和hashmap的逻辑差不多,链表删除或者树删除,如果正在扩容那么helpTransfer,等待扩容完成再删除

上一篇:ConcurrentHashMap


下一篇:Mac访达新建 tab 窗口