java识别简单的验证码

1.老规矩,先上图

要破解类似这样的验证码:

java识别简单的验证码

拆分后结果:

java识别简单的验证码

然后去匹配,得到结果。

2.拆分图片

拿到图片后,首先把图片中我们需要的部分截取出来。

具体的做法是,创建一个的和图片像素相同的一个代表权重的二维数组,遍历图片的每个像素点,如果接近白色,就标记为1,否则标记为0;

然后遍历这个二维数据,如果一个竖排都1,说明是空白列,直到第一次遇到不全为1一列,记住列的下标作为起始值,再次遇到全为1的,记住下标作为结束值,然后从起始列到结束列截取图片,依次类推。

   //分割图片
     private java.util.List<BufferedImage> splitImage(BufferedImage originImg)
             throws Exception {
         java.util.List<BufferedImage> subImgList = new ArrayList<>();
         int height = originImg.getHeight();
         int[][] weight = getImgWeight(originImg);
         int start = 0;
         int end = 0;
         boolean isStartReady = false;
         boolean isEndReady = false;
         for (int i = 0; i < weight.length; i++) {
             boolean isBlank = isBlankArr(weight[i]);
             if (isBlank) {
                 if (isStartReady && !isEndReady) {
                     end = i;
                     isEndReady = true;
                 }
             } else {
                 if (!isStartReady) {
                     start = i;
                     isStartReady = true;
                 }
             }
             if (isStartReady && isEndReady) {
                 subImgList.add(originImg.getSubimage(start, 0, end - start, height));
                 isStartReady = false;
                 isEndReady = false;
             }
         }
         return subImgList;
     }

     //颜色是否为空白
     private boolean isBlank(int colorInt) {
         Color color = new Color(colorInt);
         return color.getRed() + color.getGreen() + color.getBlue() > 600;
     }

     //数组是不是全空白
     private boolean isBlankArr(int[] arr) {
         boolean isBlank = true;
         for (int value : arr) {
             if (value == 0) {
                 isBlank = false;
                 break;
             }
         }
         return isBlank;
     }

     //获取图片权重数据
     private int[][] getImgWeight(BufferedImage img) {
         int width = img.getWidth();
         int height = img.getHeight();
         int[][] weight = new int[width][height];
         for (int x = 0; x < width; ++x) {
             for (int y = 0; y < height; ++y) {
                 if (isBlank(img.getRGB(x, y))) {
                     weight[x][y] = 1;
                 }
             }
         }
         return weight;
     }

3.与拆分好的图片进行比较

拆分好的图片后,把拆分好的图片再次计算它的权重二维数据,加载之前准备好的"已知值的图片",也计算权重数组。

然后对比两个二维数组,如果大部分都匹配,就确定了值。

如果没有找到匹配的,就把图片保存下来,人工识别后放入已知值的图片组。

   //分析识别
     private String realize(java.util.List<BufferedImage> imgList) {
         String resultStr = "";
         for (BufferedImage img : imgList) {
             String key = getKey(Global.trainedMap, img);
             if (key == null) {
                 String noTrainedKey = getKey(Global.noTrainedMap, img);
                 if(noTrainedKey == null){
                     try {
                         ImageIO.write(img, "JPG", new File(Global.LIB_NO + File.separator + UUID.randomUUID() + ".jpg"));
                     } catch (IOException e) {
                         e.printStackTrace();
                     }
                 }
             } else {
                 resultStr += key;
             }
         }
         return resultStr;
     }

     //获取已知值
     private String getKey(Map<String, BufferedImage> map, BufferedImage img){
         String resultStr = null;
         Set<Map.Entry<String, BufferedImage>> entrySet = map.entrySet();
         for (Map.Entry<String, BufferedImage> one : entrySet) {
             if (isSimilarity(img, one.getValue())) {
                 resultStr = one.getKey();
                 break;
             }
         }
         return resultStr;
     }

     //是否相似
     private boolean isSimilarity(BufferedImage imageA, BufferedImage imageB) {
         int widthA = imageA.getWidth();
         int widthB = imageB.getWidth();
         int heightA = imageA.getHeight();
         int heightB = imageB.getHeight();
         if (widthA != widthB || heightA != heightB) {
             return false;
         } else {
             int[][] weightA = getImgWeight(imageA);
             int[][] weightB = getImgWeight(imageB);
             int count = 0;
             for (int i = 0; i < widthA; i++) {
                 for (int j = 0; j < heightB; j++) {
                     if (weightA[i][j] != weightB[i][j]) {
                         count++;
                     }
                 }
             }
             if ((double) count / (widthA * widthB) > (1 - Global.SIMILARITY)) {
                 return false;
             } else {
                 return true;
             }
         }
     }

4.完整代码

 import javax.imageio.ImageIO;
 import java.awt.image.BufferedImage;
 import java.io.File;
 import java.io.IOException;
 import java.util.HashMap;
 import java.util.Map;

 public class Global {
     public static final String LIB_PATH = "C:/lib";
     public static final String LIB_NO = "C:/no";
     public static final double SIMILARITY = 0.9;
     public static Map<String, BufferedImage> trainedMap;
     public static Map<String, BufferedImage> noTrainedMap = new HashMap<>();

     static {
         trainedMap = getMap(LIB_PATH);
         noTrainedMap = getMap(LIB_NO);
     }

     private static Map<String, BufferedImage>  getMap(String path) {
        Map<String, BufferedImage> map = new HashMap<>();
         File parentFile = new File(path);
         for (String filePath : parentFile.list()) {
             File file = new File(path + File.separator + filePath);
             String fileName = file.getName();
             String key = fileName.substring(0,fileName.indexOf(".")).trim();
             try {
                 map.put(key, ImageIO.read(file));
             } catch (IOException e) {
                 e.printStackTrace();
             }
         }
         return map;
     }
 }
 import javax.imageio.ImageIO;
 import java.awt.*;
 import java.awt.image.BufferedImage;
 import java.io.File;
 import java.io.IOException;
 import java.util.*;

 /**
  * 识别验证码
  */
 public class ImageProcess {
     private String imgPath;

     public ImageProcess(String imgPath) {
         this.imgPath = imgPath;
     }

     public String getResult() {
         java.util.List<BufferedImage> imgList = null;
         try {
             BufferedImage img = ImageIO.read(new File(imgPath));
             imgList = splitImage(img);
         } catch (IOException e) {
             e.printStackTrace();
         } catch (Exception e) {
             e.printStackTrace();
         }
         return realize(imgList);
     }

     //分析识别
     private String realize(java.util.List<BufferedImage> imgList) {
         String resultStr = "";
         for (BufferedImage img : imgList) {
             String key = getKey(Global.trainedMap, img);
             if (key == null) {
                 String noTrainedKey = getKey(Global.noTrainedMap, img);
                 if(noTrainedKey == null){
                     try {
                         ImageIO.write(img, "JPG", new File(Global.LIB_NO + File.separator + UUID.randomUUID() + ".jpg"));
                     } catch (IOException e) {
                         e.printStackTrace();
                     }
                 }
             } else {
                 resultStr += key;
             }
         }
         return resultStr;
     }

     //获取已知值
     private String getKey(Map<String, BufferedImage> map, BufferedImage img){
         String resultStr = null;
         Set<Map.Entry<String, BufferedImage>> entrySet = map.entrySet();
         for (Map.Entry<String, BufferedImage> one : entrySet) {
             if (isSimilarity(img, one.getValue())) {
                 resultStr = one.getKey();
                 break;
             }
         }
         return resultStr;
     }

     //是否相似
     private boolean isSimilarity(BufferedImage imageA, BufferedImage imageB) {
         int widthA = imageA.getWidth();
         int widthB = imageB.getWidth();
         int heightA = imageA.getHeight();
         int heightB = imageB.getHeight();
         if (widthA != widthB || heightA != heightB) {
             return false;
         } else {
             int[][] weightA = getImgWeight(imageA);
             int[][] weightB = getImgWeight(imageB);
             int count = 0;
             for (int i = 0; i < widthA; i++) {
                 for (int j = 0; j < heightB; j++) {
                     if (weightA[i][j] != weightB[i][j]) {
                         count++;
                     }
                 }
             }
             if ((double) count / (widthA * widthB) > (1 - Global.SIMILARITY)) {
                 return false;
             } else {
                 return true;
             }
         }
     }

     //分割图片
     private java.util.List<BufferedImage> splitImage(BufferedImage originImg)
             throws Exception {
         java.util.List<BufferedImage> subImgList = new ArrayList<>();
         int height = originImg.getHeight();
         int[][] weight = getImgWeight(originImg);
         int start = 0;
         int end = 0;
         boolean isStartReady = false;
         boolean isEndReady = false;
         for (int i = 0; i < weight.length; i++) {
             boolean isBlank = isBlankArr(weight[i]);
             if (isBlank) {
                 if (isStartReady && !isEndReady) {
                     end = i;
                     isEndReady = true;
                 }
             } else {
                 if (!isStartReady) {
                     start = i;
                     isStartReady = true;
                 }
             }
             if (isStartReady && isEndReady) {
                 subImgList.add(originImg.getSubimage(start, 0, end - start, height));
                 isStartReady = false;
                 isEndReady = false;
             }
         }
         return subImgList;
     }

     //颜色是否为空白
     private boolean isBlank(int colorInt) {
         Color color = new Color(colorInt);
         return color.getRed() + color.getGreen() + color.getBlue() > 600;
     }

     //数组是不是全空白
     private boolean isBlankArr(int[] arr) {
         boolean isBlank = true;
         for (int value : arr) {
             if (value == 0) {
                 isBlank = false;
                 break;
             }
         }
         return isBlank;
     }

     //获取图片权重数据
     private int[][] getImgWeight(BufferedImage img) {
         int width = img.getWidth();
         int height = img.getHeight();
         int[][] weight = new int[width][height];
         for (int x = 0; x < width; ++x) {
             for (int y = 0; y < height; ++y) {
                 if (isBlank(img.getRGB(x, y))) {
                     weight[x][y] = 1;
                 }
             }
         }
         return weight;
     }

     public static void main(String[] args) throws Exception {
         String result = new ImageProcess("C:/login.jpg").getResult();
         System.out.println(result);

     }
 }
上一篇:MySQL-注释-Navicat基本使用-复杂查询练习题-解题思路-pymysql操作数据库-SQL注入-05


下一篇:Codeforces Beta Round #4 (Div. 2 Only) C. Registration system hash