spark 2.1.1
一 问题重现
问题代码示例
object MethodPositionTest { val sparkConf = new SparkConf().setAppName("MethodPositionTest") val sc = new SparkContext(sparkConf) val spark = SparkSession.builder().enableHiveSupport().getOrCreate() def main(args : Array[String]) : Unit = { val cnt = spark.sql("select * from test_table").rdd.map(item => mapFun(item.getString(0))).count println(cnt) } def mapFun(str : String) : String = "p:" + str }
当如下3行代码放到main外时
val sparkConf = new SparkConf().setAppName(getName)
val sc = new SparkContext(sparkConf)
val spark = SparkSession.builder().enableHiveSupport().getOrCreate()
Caused by: java.lang.ExceptionInInitializerError
at app.package.AppClass$$anonfun$1.apply(AppClass.scala:208)
at org.apache.spark.sql.execution.MapElementsExec$$anonfun$8$$anonfun$apply$1.apply(objects.scala:237)
at org.apache.spark.sql.execution.MapElementsExec$$anonfun$8$$anonfun$apply$1.apply(objects.scala:237)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:99)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.SparkException: A master URL must be set in your configuration
at org.apache.spark.SparkContext.<init>(SparkContext.scala:379)
at app.package.AppClass$.<clinit>(AppClass.scala)
二 问题解析
MethodPositionTest 定义了一个匿名函数anonfun,这个匿名函数在RDD.map中调用,即在Executor中执行,匿名函数中又依赖mapFun方法,触发类的初始化:MethodPositionTest$.<clinit>,初始化时会执行main外的spark初始化代码,即在Executor中创建SparkConf和SparkContext,这是不应该发生的,一个spark应用中只能有一个SparkContext并且应该在Driver端而不是Executor,而且发生之后会导致错误,代码如下:
org.apache.spark.SparkContext
try { _conf = config.clone() _conf.validateSettings() if (!_conf.contains("spark.master")) { throw new SparkException("A master URL must be set in your configuration") }
问题1)为什么在Driver端不会报错找不到master,而在Executor端会报错
Spark应用代码如下:
val sparkConf = new SparkConf().setAppName(getName)
这里SparkConf只设置了AppName,为什么在Driver端不会报错找不到master,而在Executor端会报错,这里需要看Spark Submit的执行过程,详见 https://www.cnblogs.com/barneywill/p/9820684.html
Driver端执行时SparkSubmit会将各种参数包括命令行、配置文件、系统环境变量等,统一设置到系统环境变量
for ((key, value) <- sysProps) {
System.setProperty(key, value)
}
然后SparkConf会默认从系统环境变量中加载配置
for ((key, value) <- Utils.getSystemProperties if key.startsWith("spark.")) {
set(key, value, silent)
}
所以Driver端的SparkConf会包含所有的参数,但是Executor端则没有。
问题2)当spark相关的初始化代码在main外时,为什么有时报错,有时不报错
具体情形如下:
1)如果main里边的transformation(示例中的map方法)不依赖外部函数调用,正常;
2)如果main里边的transformation(示例中的map方法)依赖main里的函数,报错;
3)如果main里边的transformation(示例中的map方法)依赖main外的函数,报错;
这里可以通过反编译代码来看原因,示例MethodPositionTest的反编译代码如下:
public final class MethodPositionTest$ { public static final MethodPositionTest$ MODULE$ = this; private final SparkConf sparkConf = (new SparkConf()).setAppName("MethodPositionTest"); private final SparkContext sc = new SparkContext(sparkConf()); private final SparkSession spark; public SparkConf sparkConf() { return sparkConf; } public SparkContext sc() { return sc; } public SparkSession spark() { return spark; } public String mapFun(String str) { return (new StringBuilder()).append("p:").append(str).toString(); } public void main(String args[]) { long cnt = spark().sql("select * from test_table").rdd().map(new Serializable() { public static final long serialVersionUID = 0L; public final String apply(Row item) { return MethodPositionTest$.MODULE$.mapFun(item.getString(0)); } public final volatile Object apply(Object v1) { return apply((Row)v1); } }, ClassTag$.MODULE$.apply(java/lang/String)).count(); Predef$.MODULE$.println(BoxesRunTime.boxToLong(cnt)); } private MethodPositionTest$() { spark = SparkSession$.MODULE$.builder().enableHiveSupport().getOrCreate(); } static { new MethodPositionTest$(); } }
可见这里的匿名内部类依赖类MethodPositionTest$的方法mapFun,所以会触发类MethodPositionTest$的加载以及静态代码块执行,触发报错;
综上,不建议将spark的初始化代码放到main外,很容易出问题。