【原创】大叔问题定位分享(10)提交spark任务偶尔报错 org.apache.spark.SparkException: A master URL must be set in your configuration

spark 2.1.1

一 问题重现

问题代码示例

object MethodPositionTest {

  val sparkConf = new SparkConf().setAppName("MethodPositionTest")

  val sc = new SparkContext(sparkConf)

  val spark = SparkSession.builder().enableHiveSupport().getOrCreate()

  def main(args : Array[String]) : Unit = {

    val cnt = spark.sql("select * from test_table").rdd.map(item => mapFun(item.getString(0))).count

    println(cnt)

  }

  def mapFun(str : String) : String = "p:" + str

}

当如下3行代码放到main外时

val sparkConf = new SparkConf().setAppName(getName)

val sc = new SparkContext(sparkConf)

val spark = SparkSession.builder().enableHiveSupport().getOrCreate()

有一定几率报错:

Caused by: java.lang.ExceptionInInitializerError

    at app.package.AppClass$$anonfun$1.apply(AppClass.scala:208)

at org.apache.spark.sql.execution.MapElementsExec$$anonfun$8$$anonfun$apply$1.apply(objects.scala:237)

at org.apache.spark.sql.execution.MapElementsExec$$anonfun$8$$anonfun$apply$1.apply(objects.scala:237)

at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)

at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)

at scala.collection.Iterator$class.foreach(Iterator.scala:893)

at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)

at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)

at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)

at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)

at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)

at scala.collection.AbstractIterator.to(Iterator.scala:1336)

at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)

at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)

at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)

at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)

at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)

at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)

at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)

at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)

at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)

at org.apache.spark.scheduler.Task.run(Task.scala:99)

    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)

at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)

at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)

at java.lang.Thread.run(Thread.java:745)

Caused by: org.apache.spark.SparkException: A master URL must be set in your configuration

    at org.apache.spark.SparkContext.<init>(SparkContext.scala:379)

at app.package.AppClass$.<clinit>(AppClass.scala)

二 问题解析

MethodPositionTest 定义了一个匿名函数anonfun,这个匿名函数在RDD.map中调用,即在Executor中执行,匿名函数中又依赖mapFun方法,触发类的初始化:MethodPositionTest$.<clinit>,初始化时会执行main外的spark初始化代码,即在Executor中创建SparkConf和SparkContext,这是不应该发生的,一个spark应用中只能有一个SparkContext并且应该在Driver端而不是Executor,而且发生之后会导致错误,代码如下:

org.apache.spark.SparkContext

  try {

    _conf = config.clone()

    _conf.validateSettings()

    if (!_conf.contains("spark.master")) {

      throw new SparkException("A master URL must be set in your configuration")

    }

问题1)为什么在Driver端不会报错找不到master,而在Executor端会报错

Spark应用代码如下:

val sparkConf = new SparkConf().setAppName(getName)

这里SparkConf只设置了AppName,为什么在Driver端不会报错找不到master,而在Executor端会报错,这里需要看Spark Submit的执行过程,详见 https://www.cnblogs.com/barneywill/p/9820684.html

Driver端执行时SparkSubmit会将各种参数包括命令行、配置文件、系统环境变量等,统一设置到系统环境变量

for ((key, value) <- sysProps) {

System.setProperty(key, value)

}

然后SparkConf会默认从系统环境变量中加载配置

for ((key, value) <- Utils.getSystemProperties if key.startsWith("spark.")) {

set(key, value, silent)

}

所以Driver端的SparkConf会包含所有的参数,但是Executor端则没有。

问题2)当spark相关的初始化代码在main外时,为什么有时报错,有时不报错

具体情形如下:
1)如果main里边的transformation(示例中的map方法)不依赖外部函数调用,正常;
2)如果main里边的transformation(示例中的map方法)依赖main里的函数,报错;
3)如果main里边的transformation(示例中的map方法)依赖main外的函数,报错;

这里可以通过反编译代码来看原因,示例MethodPositionTest的反编译代码如下:

public final class MethodPositionTest$

{

         public static final MethodPositionTest$ MODULE$ = this;

         private final SparkConf sparkConf = (new SparkConf()).setAppName("MethodPositionTest");

         private final SparkContext sc = new SparkContext(sparkConf());

         private final SparkSession spark;

         public SparkConf sparkConf()

         {

                  return sparkConf;

         }

         public SparkContext sc()

         {

                  return sc;

         }

         public SparkSession spark()

         {

                  return spark;

         }

         public String mapFun(String str)

         {

                  return (new StringBuilder()).append("p:").append(str).toString();

         }

         public void main(String args[])

         {

                  long cnt = spark().sql("select * from test_table").rdd().map(new Serializable() {

                          public static final long serialVersionUID = 0L;

                          public final String apply(Row item)

                          {

                                   return MethodPositionTest$.MODULE$.mapFun(item.getString(0));

                          }

                          public final volatile Object apply(Object v1)

                          {

                                   return apply((Row)v1);

                          }

                  }, ClassTag$.MODULE$.apply(java/lang/String)).count();

                  Predef$.MODULE$.println(BoxesRunTime.boxToLong(cnt));

         }

         private MethodPositionTest$()

         {

                  spark = SparkSession$.MODULE$.builder().enableHiveSupport().getOrCreate();

         }

         static

         {

                  new MethodPositionTest$();

         }

}

可见这里的匿名内部类依赖类MethodPositionTest$的方法mapFun,所以会触发类MethodPositionTest$的加载以及静态代码块执行,触发报错;

综上,不建议将spark的初始化代码放到main外,很容易出问题。

上一篇:[LeetCode]题解(python):143-Reorder List


下一篇:linux下出现+ ls --color=auto -l --color=auto...++ echo -ne '\033]0;root@imon-2:~'等