从网卡收包到上送协议栈有两个模式:
一种是传统的中断模式,即收到一个数据包,执行一次中断处理函数(比如e100_rx),在此函数中分配skb,替换有数据的skb(DMA已经将数据拷贝到初始化的skb),调用netif_rx将有数据的skb放在percpu的队列上(如果开启了RPS,这个队列有可能是本地cpu的,也有可能是其他cpu的),最后激活软中断。之后的软中断处理函数net_rx_action中调用poll函数process_backlog(如果将skb放在其他cpu队列上了,还需要通过ipi激活其他cpu的软中断),处理percpu队列上的数据包,上送协议栈__netif_receive_skb。
中断模式会触发很多中断,影响性能,所以有了napi模式,这种模式下,一次中断可以poll收多个数据包(配额64)。具体的为收到一个中断,执行中断处理函数(比如ixgbe_msix_clean_rings),在此函数中只是激活软中断,并不处理skb,在之后的软中断处理函数net_rx_action中调用驱动注册的poll函数,比如ixgbe_poll,来收包,上送协议栈netif_receive_skb_internal(如果开启了RPS,就会按照non-napi的处理方式,将skb放在percpu的队列上,这个队列有可能是本地cpu的,也有可能是其他cpu的),再经过软中断处理才会将skb上送协议栈__netif_receive_skb。
下面的图片展示了这两种模式的流程,其中蓝色部分为公共流程,红色的为non-NAPI流程,绿色的为NAPI流程。
image.png
软中断流程分为两步,首先激活软中断,然后在某个时刻执行软中断处理函数
- 激活软中断有以下三个地方
a. 非网络软中断激活方式
raise_softirq
raise_softirq_irqoff(nr);
__raise_softirq_irqoff(unsigned int nr)
or_softirq_pending(1UL << nr);
b. NAPI模式下激活软中断方式,一般在驱动的中断处理函数中调用
napi_schedule
__napi_schedule(n);
____napi_schedule(this_cpu_ptr(&softnet_data), n);
list_add_tail(&napi->poll_list, &sd->poll_list);
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
or_softirq_pending(1UL << nr);
c. non-NAPI模式下激活软中断方式,在netif_rx->enqueue_to_backlog时调用
enqueue_to_backlog
sd = &per_cpu(softnet_data, cpu);
____napi_schedule(sd, &sd->backlog);
list_add_tail(&napi->poll_list, &sd->poll_list);
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
or_softirq_pending(1UL << nr);
- 执行软中断的有以下三个地方:
a. 硬件中断代码返回的时候
irq_exit
if (!in_interrupt() && local_softirq_pending())
invoke_softirq
__do_softirq
b. ksoftirqd内核服务线程运行的时候
__do_softirq
invoke_softirq
raise_softirq_irqoff
wakeup_softirqd
run_ksoftirqd
if (local_softirq_pending()) {
__do_softirq
c. netif_rx_ni
netif_rx_ni 会先将做和netif_rx一样的操作后,如果有软中断激活,则执行软中断
netif_rx_ni
if (local_softirq_pending())
do_softirq();
do_softirq_own_stack();
if (local_softirq_pending())
__do_softirq
软中断相关初始化
kernel启动时,软中断相关初始化
static int __init net_dev_init(void)
{
...
/*
* Initialise the packet receive queues.
*/
初始化percpu的结构softnet_data
for_each_possible_cpu(i) {
struct softnet_data *sd = &per_cpu(softnet_data, i);
skb_queue_head_init(&sd->input_pkt_queue);
skb_queue_head_init(&sd->process_queue);
INIT_LIST_HEAD(&sd->poll_list);
sd->output_queue_tailp = &sd->output_queue;
#ifdef CONFIG_RPS
sd->csd.func = rps_trigger_softirq; //激活其他cpu软中断
sd->csd.info = sd;
sd->cpu = i;
#endif
backlog借用napi的结构,实现non-NAPI的处理。
process_backlog就是NAPI下的poll函数
sd->backlog.poll = process_backlog;
sd->backlog.weight = weight_p;
}
...
注册和网络相关的两个软中断处理函数
open_softirq(NET_TX_SOFTIRQ, net_tx_action);
open_softirq(NET_RX_SOFTIRQ, net_rx_action);
...
}
支持以下软中断类型
enum
{
HI_SOFTIRQ=0,
TIMER_SOFTIRQ,
NET_TX_SOFTIRQ,
NET_RX_SOFTIRQ,
BLOCK_SOFTIRQ,
BLOCK_IOPOLL_SOFTIRQ,
TASKLET_SOFTIRQ,
SCHED_SOFTIRQ,
HRTIMER_SOFTIRQ,
RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */
NR_SOFTIRQS
};
注册软中断处理函数
void open_softirq(int nr, void (*action)(struct softirq_action *))
{
softirq_vec[nr].action = action;
}
non-NAPI处理流程
- 激活软中断
网卡收到数据包后,通过中断通知cpu,cpu调用网卡驱动注册的中断处理函数,比如dm9000_interrupt,调用netif_rx将skb放入percpu队列,激活软中断。细节请看下面代码分析
static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
/* Received the coming packet */
if (int_status & ISR_PRS)
dm9000_rx(dev);
//分配 skb
skb = netdev_alloc_skb(dev, RxLen + 4)
//将数据存入 skb
rdptr = (u8 *) skb_put(skb, RxLen - 4);
(db->inblk)(db->io_data, rdptr, RxLen);
//调用netif_rx处理skb
netif_rx(skb);
int netif_rx(struct sk_buff *skb)
{
//static tracepoint
trace_netif_rx_entry(skb);
return netif_rx_internal(skb);
}
获取合适的cpu,调用 enqueue_to_backlog 将skb放入percpu的队列中
static int netif_rx_internal(struct sk_buff *skb)
{
int ret;
net_timestamp_check(netdev_tstamp_prequeue, skb);
trace_netif_rx(skb);
#ifdef CONFIG_RPS
如果内核配置选项配置了 RPS,并且使能了rps(echo f >
/sys/class/net/eth0/queues/rx-0/rps_cpus),则通过get_rps_cpu获取合适的cpu(有
可能是本地cpu也有可能是remote cpu),否则使用本地cpu
if (static_key_false(&rps_needed)) {
struct rps_dev_flow voidflow, *rflow = &voidflow;
int cpu;
preempt_disable();
rcu_read_lock();
cpu = get_rps_cpu(skb->dev, skb, &rflow);
if (cpu < 0)
cpu = smp_processor_id();
ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
rcu_read_unlock();
preempt_enable();
} else
#endif
{
unsigned int qtail;
没有配置rps,则获取当地cpu
ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
put_cpu();
}
return ret;
}
将skb放在指定cpu的softnet_data->input_pkt_queue队列中,
如果是队列上第一个包还需要激活软中断
/*
* enqueue_to_backlog is called to queue an skb to a per CPU backlog
* queue (may be a remote CPU queue).
*/
static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
unsigned int *qtail)
{
struct softnet_data *sd;
unsigned long flags;
unsigned int qlen;
获取percpu的sd
sd = &per_cpu(softnet_data, cpu);
local_irq_save(flags);
rps_lock(sd);
if (!netif_running(skb->dev))
goto drop;
如果队列中skb个数小于netdev_max_backlog(默认值1000,可以通过sysctl修改netdev_max_backlog值),
并且 skb_flow_limit (为了防止large flow占用太多cpu,small flow得不到处理。代码实现没看明白)返回false,则skb可以继续入队,否则drop skb
qlen = skb_queue_len(&sd->input_pkt_queue);
if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
如果队列不为空,则直接入队,否则先激活软中断,再入队
if (skb_queue_len(&sd->input_pkt_queue)) {
enqueue:
__skb_queue_tail(&sd->input_pkt_queue, skb);
input_queue_tail_incr_save(sd, qtail);
rps_unlock(sd);
local_irq_restore(flags);
return NET_RX_SUCCESS;
}
/* Schedule NAPI for backlog device
* We can use non atomic operation since we own the queue lock
*/
队列为空时,即skb是第一个入队元素,则将state设置为 NAPI_STATE_SCHED(软中断处理函数rx_net_action会检查此标志),表示软中断可以处理此backlog
if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
if返回0的情况下,需要将sd->backlog挂到sd->poll_list上,并激活软中断。
rps_ipi_queued看下面的分析
if (!rps_ipi_queued(sd))
____napi_schedule(sd, &sd->backlog);
}
goto enqueue;
}
drop:
sd->dropped++;
rps_unlock(sd);
local_irq_restore(flags);
atomic_long_inc(&skb->dev->rx_dropped);
kfree_skb(skb);
return NET_RX_DROP;
}
/*
* Check if this softnet_data structure is another cpu one
* If yes, queue it to our IPI list and return 1
* If no, return 0
*/
上面注释说的很清楚,在配置RPS情况下,检查sd是当前cpu的还是其他cpu的,
如果是其他cpu的,将sd放在当前cpu的mysd->rps_ipi_list上,并激活当前cpu的软中断,返回1. 在软中断处理函数net_rx_action中,通过ipi中断通知其他cpu来处理放在其他cpu队列上的skb
如果是当前cpu,或者没有配置RPS,则返回0,在外层函数激活软中断,
并将当前cpu的backlog放入sd->poll_list上,
static int rps_ipi_queued(struct softnet_data *sd)
{
#ifdef CONFIG_RPS
struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
if (sd != mysd) {
sd->rps_ipi_next = mysd->rps_ipi_list;
mysd->rps_ipi_list = sd;
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
return 1;
}
#endif /* CONFIG_RPS */
return 0;
}
- 执行软中断
__do_softirq 执行当前cpu上所有软中断
asmlinkage __visible void __do_softirq(void)
{
MAX_SOFTIRQ_TIME为2ms,如果一直有软中断可以执行2ms
unsigned long end = jiffies + MAX_SOFTIRQ_TIME;
unsigned long old_flags = current->flags;
MAX_SOFTIRQ_RESTART为10,表示可以循环执行10此软中断
int max_restart = MAX_SOFTIRQ_RESTART;
struct softirq_action *h;
bool in_hardirq;
__u32 pending;
int softirq_bit;
/*
* Mask out PF_MEMALLOC s current task context is borrowed for the
* softirq. A softirq handled such as network RX might set PF_MEMALLOC
* again if the socket is related to swap
*/
current->flags &= ~PF_MEMALLOC;
取出当前cpu上所有的软中断
pending = local_softirq_pending();
account_irq_enter_time(current);
__local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET);
in_hardirq = lockdep_softirq_start();
restart:
/* Reset the pending bitmask before enabling irqs */
清空当前cpu上所有的软中断
set_softirq_pending(0);
执行软中断时打开硬件中断
local_irq_enable();
h = softirq_vec;
遍历执行软中断
while ((softirq_bit = ffs(pending))) {
unsigned int vec_nr;
int prev_count;
h += softirq_bit - 1;
vec_nr = h - softirq_vec;
prev_count = preempt_count();
kstat_incr_softirqs_this_cpu(vec_nr);
trace_softirq_entry(vec_nr);
软中断处理函数,比如 net_rx_action
h->action(h);
trace_softirq_exit(vec_nr);
if (unlikely(prev_count != preempt_count())) {
pr_err("huh, entered softirq %u %s %p with preempt_count %08x, exited with %08x?\n",
vec_nr, softirq_to_name[vec_nr], h->action,
prev_count, preempt_count());
preempt_count_set(prev_count);
}
h++;
pending >>= softirq_bit;
}
rcu_bh_qs();
执行完软中断,关闭硬中断
local_irq_disable();
检查执行软中断过程中(开启硬中断)是否有新的软中断被激活
pending = local_softirq_pending();
if (pending) {
如果有新的软中断被激活,并且执行软中断时间不足2ms,
并且重新执行次数不足10次,则可以再次执行软中断。
if (time_before(jiffies, end) && !need_resched() &&
--max_restart)
goto restart;
否则只能唤醒软中断处理线程继续处理软中断
wakeup_softirqd();
}
lockdep_softirq_end(in_hardirq);
account_irq_exit_time(current);
__local_bh_enable(SOFTIRQ_OFFSET);
WARN_ON_ONCE(in_interrupt());
tsk_restore_flags(current, old_flags, PF_MEMALLOC);
}
网络收包软中断处理函数
static void net_rx_action(struct softirq_action *h)
{
获取percpu的sd
struct softnet_data *sd = this_cpu_ptr(&softnet_data);
unsigned long time_limit = jiffies + 2;
netdev_budget默认值300,可通过sysctl修改
int budget = netdev_budget;
void *have;
local_irq_disable();
如果sd->poll_list不为空,说明有数据需要处理
while (!list_empty(&sd->poll_list)) {
struct napi_struct *n;
int work, weight;
/* If softirq window is exhuasted then punt.
* Allow this to run for 2 jiffies since which will allow
* an average latency of 1.5/HZ.
*/
如果budget用完了,或者经过了两个时间片,说明数据包压力过大,还没处理
完就需要跳出循环,在softnet_break会再次激活软中断(因为执行软中断时已
经把所有的pending清空了)
if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
goto softnet_break;
local_irq_enable();
/* Even though interrupts have been re-enabled, this
* access is safe because interrupts can only add new
* entries to the tail of this list, and only ->poll()
* calls can remove this head entry from the list.
*/
n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
have = netpoll_poll_lock(n);
weight = n->weight;
/* This NAPI_STATE_SCHED test is for avoiding a race
* with netpoll's poll_napi(). Only the entity which
* obtains the lock and sees NAPI_STATE_SCHED set will
* actually make the ->poll() call. Therefore we avoid
* accidentally calling ->poll() when NAPI is not scheduled.
*/
work = 0;
只有state为NAPI_STATE_SCHED才会执行poll函数。
对于non-napi来说,poll函数为process_backlog,处理percpu的input queue上的数据包。
对于napi来说,poll函数为网卡驱动提供的poll函数,比如ixgbe_poll,分配skb,将skb上送协议栈
如果poll处理后的结果work小于weight说明没有更多数据需要处理,poll函数中会把napi从链表sd->poll_list删除。
如果work等于weight说明还有更多数据需要处理,不会删除napi,只是将napi移动到链表尾部
if (test_bit(NAPI_STATE_SCHED, &n->state)) {
work = n->poll(n, weight);
trace_napi_poll(n);
}
WARN_ON_ONCE(work > weight);
work为poll实际处理的数据个数,budget需要减去work
budget -= work;
local_irq_disable();
/* Drivers must not modify the NAPI state if they
* consume the entire weight. In such cases this code
* still "owns" the NAPI instance and therefore can
* move the instance around on the list at-will.
*/
如果work等于weight说明还有更多数据需要处理
if (unlikely(work == weight)) {
if (unlikely(napi_disable_pending(n))) {
local_irq_enable();
napi_complete(n);
local_irq_disable();
} else {
if (n->gro_list) {
/* flush too old packets
* If HZ < 1000, flush all packets.
*/
local_irq_enable();
napi_gro_flush(n, HZ >= 1000);
local_irq_disable();
}
将napi移动到链表尾部
list_move_tail(&n->poll_list, &sd->poll_list);
}
}
netpoll_poll_unlock(have);
}
out:
net_rps_action_and_irq_enable(sd);
return;
softnet_break:
sd->time_squeeze++;
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
goto out;
}
/*
* net_rps_action_and_irq_enable sends any pending IPI's for rps.
* Note: called with local irq disabled, but exits with local irq enabled.
*/
如果链表 sd->rps_ipi_list不为空,说明在rps下,将skb放在其他cpu上的percpu队列
上了,所以需要通过ipi中断通知其他cpu,通过smp_call_function_single_async远
程激活其他cpu的软中断,使其他cpu处理数据包
static void net_rps_action_and_irq_enable(struct softnet_data *sd)
{
#ifdef CONFIG_RPS
struct softnet_data *remsd = sd->rps_ipi_list;
if (remsd) {
sd->rps_ipi_list = NULL;
local_irq_enable();
/* Send pending IPI's to kick RPS processing on remote cpus. */
while (remsd) {
struct softnet_data *next = remsd->rps_ipi_next;
if (cpu_online(remsd->cpu))
smp_call_function_single_async(remsd->cpu,
&remsd->csd);
remsd = next;
}
} else
#endif
local_irq_enable();
}
non-napi下的poll函数为 process_backlog
static int process_backlog(struct napi_struct *napi, int quota)
{
int work = 0;
struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
#ifdef CONFIG_RPS
/* Check if we have pending ipi, its better to send them now,
* not waiting net_rx_action() end.
*/
激活其他cpu上的软中断
if (sd->rps_ipi_list) {
local_irq_disable();
net_rps_action_and_irq_enable(sd);
}
#endif
napi->weight = weight_p;
local_irq_disable();
while (1) {
struct sk_buff *skb;
while ((skb = __skb_dequeue(&sd->process_queue))) {
rcu_read_lock();
local_irq_enable();
将skb上送协议栈
__netif_receive_skb(skb);
rcu_read_unlock();
local_irq_disable();
input_queue_head_incr(sd);
处理skb的个数达到quota了,说明还有更多数据包需要处理
if (++work >= quota) {
local_irq_enable();
return work;
}
}
rps_lock(sd);
if (skb_queue_empty(&sd->input_pkt_queue)) {
/*
* Inline a custom version of __napi_complete().
* only current cpu owns and manipulates this napi,
* and NAPI_STATE_SCHED is the only possible flag set
* on backlog.
* We can use a plain write instead of clear_bit(),
* and we dont need an smp_mb() memory barrier.
*/
如果input_pkt_queue队列为空,将napi从链表poll_list删除
list_del(&napi->poll_list);
napi->state = 0;
rps_unlock(sd);
break;
}
将input_pkt_queue队列中的skb挂到process_queue上,并清空input_pkt_queue
skb_queue_splice_tail_init(&sd->input_pkt_queue,
&sd->process_queue);
rps_unlock(sd);
}
local_irq_enable();
return work;
}
NAPI
1.激活软中断
硬件中断到来时调用中断处理函数 ixgbe_msix_clean_rings
ixgbe_msix_clean_rings
napi_schedule(&q_vector->napi);
____napi_schedule(this_cpu_ptr(&softnet_data), n);
//将napi添加到per cpu的softnet_data->poll_list中
list_add_tail(&napi->poll_list, &sd->poll_list);
//将接收软中断置位
__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2.执行软中断
__do_softirq
net_rx_action
n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
work = n->poll(n, weight); //即调用 ixgbe_poll
ixgbe_clean_rx_irq(q_vector, ring)
skb = ixgbe_fetch_rx_buffer(rx_ring, rx_desc);
ixgbe_rx_skb(q_vector, skb);
napi_gro_receive(&q_vector->napi, skb);
//上送协议栈,但如果开启了RPS就走non-NAPI的路径了
netif_receive_skb_internal
/* all work done, exit the polling mode */
//如果处理的skb小于配额,说明工作已经完成,将napi从poll_list删除
//清除标志位 NAPI_STATE_SCHED
napi_complete(napi);
list_del(&n->poll_list);
clear_bit(NAPI_STATE_SCHED, &n->state);
如果没有开启RPS,则直接调用__netif_receive_skb上送协议栈了。
如果开启了RPS,则调用get_rps_cpu获取合适的cpu(有可能是本地cpu,也有可能是其他cpu),再调用enqueue_to_backlog将skb放在percpu的队列中,激活相应cpu的软中断。
static int netif_receive_skb_internal(struct sk_buff *skb)
{
int ret;
net_timestamp_check(netdev_tstamp_prequeue, skb);
if (skb_defer_rx_timestamp(skb))
return NET_RX_SUCCESS;
rcu_read_lock();
#ifdef CONFIG_RPS
注意使用的是static_key_false进行判断,意思是分支预测为false概率很大
if (static_key_false(&rps_needed)) {
struct rps_dev_flow voidflow, *rflow = &voidflow;
int cpu = get_rps_cpu(skb->dev, skb, &rflow);
if (cpu >= 0) {
ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
rcu_read_unlock();
return ret;
}
}
#endif
ret = __netif_receive_skb(skb);
rcu_read_unlock();
return ret;
}
参考
https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/