kernel网络之软中断

从网卡收包到上送协议栈有两个模式:
一种是传统的中断模式,即收到一个数据包,执行一次中断处理函数(比如e100_rx),在此函数中分配skb,替换有数据的skb(DMA已经将数据拷贝到初始化的skb),调用netif_rx将有数据的skb放在percpu的队列上(如果开启了RPS,这个队列有可能是本地cpu的,也有可能是其他cpu的),最后激活软中断。之后的软中断处理函数net_rx_action中调用poll函数process_backlog(如果将skb放在其他cpu队列上了,还需要通过ipi激活其他cpu的软中断),处理percpu队列上的数据包,上送协议栈__netif_receive_skb。
中断模式会触发很多中断,影响性能,所以有了napi模式,这种模式下,一次中断可以poll收多个数据包(配额64)。具体的为收到一个中断,执行中断处理函数(比如ixgbe_msix_clean_rings),在此函数中只是激活软中断,并不处理skb,在之后的软中断处理函数net_rx_action中调用驱动注册的poll函数,比如ixgbe_poll,来收包,上送协议栈netif_receive_skb_internal(如果开启了RPS,就会按照non-napi的处理方式,将skb放在percpu的队列上,这个队列有可能是本地cpu的,也有可能是其他cpu的),再经过软中断处理才会将skb上送协议栈__netif_receive_skb。

下面的图片展示了这两种模式的流程,其中蓝色部分为公共流程,红色的为non-NAPI流程,绿色的为NAPI流程。


  kernel网络之软中断 image.png

软中断流程分为两步,首先激活软中断,然后在某个时刻执行软中断处理函数

  1. 激活软中断有以下三个地方
    a. 非网络软中断激活方式
raise_softirq
  raise_softirq_irqoff(nr);
      __raise_softirq_irqoff(unsigned int nr)
        or_softirq_pending(1UL << nr);

b. NAPI模式下激活软中断方式,一般在驱动的中断处理函数中调用

napi_schedule
  __napi_schedule(n);
    ____napi_schedule(this_cpu_ptr(&softnet_data), n);
        list_add_tail(&napi->poll_list, &sd->poll_list);
        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
          or_softirq_pending(1UL << nr);

c. non-NAPI模式下激活软中断方式,在netif_rx->enqueue_to_backlog时调用

enqueue_to_backlog
  sd = &per_cpu(softnet_data, cpu);
  ____napi_schedule(sd, &sd->backlog);
    list_add_tail(&napi->poll_list, &sd->poll_list);
    __raise_softirq_irqoff(NET_RX_SOFTIRQ);
      or_softirq_pending(1UL << nr);
  1. 执行软中断的有以下三个地方:
    a. 硬件中断代码返回的时候
  irq_exit
    if (!in_interrupt() && local_softirq_pending())
      invoke_softirq
        __do_softirq

b. ksoftirqd内核服务线程运行的时候

__do_softirq
  invoke_softirq
    raise_softirq_irqoff
        wakeup_softirqd 
            run_ksoftirqd
                  if (local_softirq_pending()) {
                    __do_softirq

c. netif_rx_ni
netif_rx_ni 会先将做和netif_rx一样的操作后,如果有软中断激活,则执行软中断

netif_rx_ni
  if (local_softirq_pending())
    do_softirq();
      do_softirq_own_stack();
        if (local_softirq_pending()) 
          __do_softirq

软中断相关初始化

kernel启动时,软中断相关初始化
static int __init net_dev_init(void)
{
    ...
    /*
     *  Initialise the packet receive queues.
     */
    初始化percpu的结构softnet_data 
    for_each_possible_cpu(i) {
        struct softnet_data *sd = &per_cpu(softnet_data, i);

        skb_queue_head_init(&sd->input_pkt_queue);
        skb_queue_head_init(&sd->process_queue);
        INIT_LIST_HEAD(&sd->poll_list);
        sd->output_queue_tailp = &sd->output_queue;
#ifdef CONFIG_RPS
        sd->csd.func = rps_trigger_softirq; //激活其他cpu软中断
        sd->csd.info = sd;
        sd->cpu = i;
#endif
          backlog借用napi的结构,实现non-NAPI的处理。
          process_backlog就是NAPI下的poll函数
        sd->backlog.poll = process_backlog;
        sd->backlog.weight = weight_p;
    }

    ...
    注册和网络相关的两个软中断处理函数
    open_softirq(NET_TX_SOFTIRQ, net_tx_action);
    open_softirq(NET_RX_SOFTIRQ, net_rx_action);
    ...
}
支持以下软中断类型
enum
{
    HI_SOFTIRQ=0,
    TIMER_SOFTIRQ,
    NET_TX_SOFTIRQ,
    NET_RX_SOFTIRQ,
    BLOCK_SOFTIRQ,
    BLOCK_IOPOLL_SOFTIRQ,
    TASKLET_SOFTIRQ,
    SCHED_SOFTIRQ,
    HRTIMER_SOFTIRQ,
    RCU_SOFTIRQ,    /* Preferable RCU should always be the last softirq */

    NR_SOFTIRQS
};
注册软中断处理函数
void open_softirq(int nr, void (*action)(struct softirq_action *))
{
    softirq_vec[nr].action = action;
}

non-NAPI处理流程

  1. 激活软中断
    网卡收到数据包后,通过中断通知cpu,cpu调用网卡驱动注册的中断处理函数,比如dm9000_interrupt,调用netif_rx将skb放入percpu队列,激活软中断。细节请看下面代码分析
static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
    /* Received the coming packet */
    if (int_status & ISR_PRS)
        dm9000_rx(dev);
            //分配 skb
            skb = netdev_alloc_skb(dev, RxLen + 4)
            //将数据存入 skb
            rdptr = (u8 *) skb_put(skb, RxLen - 4);
            (db->inblk)(db->io_data, rdptr, RxLen);
            //调用netif_rx处理skb
            netif_rx(skb);

int netif_rx(struct sk_buff *skb)
{
    //static tracepoint
    trace_netif_rx_entry(skb);

    return netif_rx_internal(skb);
}

获取合适的cpu,调用 enqueue_to_backlog 将skb放入percpu的队列中
static int netif_rx_internal(struct sk_buff *skb)
{
    int ret;

    net_timestamp_check(netdev_tstamp_prequeue, skb);

    trace_netif_rx(skb);
#ifdef CONFIG_RPS
  如果内核配置选项配置了 RPS,并且使能了rps(echo f >  
 /sys/class/net/eth0/queues/rx-0/rps_cpus),则通过get_rps_cpu获取合适的cpu(有 
 可能是本地cpu也有可能是remote cpu),否则使用本地cpu
    if (static_key_false(&rps_needed)) {
        struct rps_dev_flow voidflow, *rflow = &voidflow;
        int cpu;

        preempt_disable();
        rcu_read_lock();

        cpu = get_rps_cpu(skb->dev, skb, &rflow);
        if (cpu < 0)
            cpu = smp_processor_id();

        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);

        rcu_read_unlock();
        preempt_enable();
    } else
#endif
    {
        unsigned int qtail;
        没有配置rps,则获取当地cpu
        ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
        put_cpu();
    }
    return ret;
}

将skb放在指定cpu的softnet_data->input_pkt_queue队列中,
如果是队列上第一个包还需要激活软中断
/*
 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
 * queue (may be a remote CPU queue).
 */
static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
                  unsigned int *qtail)
{
    struct softnet_data *sd;
    unsigned long flags;
    unsigned int qlen;
    获取percpu的sd
    sd = &per_cpu(softnet_data, cpu);

    local_irq_save(flags);

    rps_lock(sd);
    if (!netif_running(skb->dev))
        goto drop;
    如果队列中skb个数小于netdev_max_backlog(默认值1000,可以通过sysctl修改netdev_max_backlog值),
    并且 skb_flow_limit (为了防止large flow占用太多cpu,small flow得不到处理。代码实现没看明白)返回false,则skb可以继续入队,否则drop skb
    qlen = skb_queue_len(&sd->input_pkt_queue);
    if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
        如果队列不为空,则直接入队,否则先激活软中断,再入队
        if (skb_queue_len(&sd->input_pkt_queue)) {
enqueue:
            __skb_queue_tail(&sd->input_pkt_queue, skb);
            input_queue_tail_incr_save(sd, qtail);
            rps_unlock(sd);
            local_irq_restore(flags);
            return NET_RX_SUCCESS;
        }

        /* Schedule NAPI for backlog device
         * We can use non atomic operation since we own the queue lock
         */
        队列为空时,即skb是第一个入队元素,则将state设置为 NAPI_STATE_SCHED(软中断处理函数rx_net_action会检查此标志),表示软中断可以处理此backlog
        if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
              if返回0的情况下,需要将sd->backlog挂到sd->poll_list上,并激活软中断。
            rps_ipi_queued看下面的分析
            if (!rps_ipi_queued(sd))
                ____napi_schedule(sd, &sd->backlog);
        }
        goto enqueue;
    }

drop:
    sd->dropped++;
    rps_unlock(sd);

    local_irq_restore(flags);

    atomic_long_inc(&skb->dev->rx_dropped);
    kfree_skb(skb);
    return NET_RX_DROP;
}

/*
 * Check if this softnet_data structure is another cpu one
 * If yes, queue it to our IPI list and return 1
 * If no, return 0
 */ 
上面注释说的很清楚,在配置RPS情况下,检查sd是当前cpu的还是其他cpu的,
如果是其他cpu的,将sd放在当前cpu的mysd->rps_ipi_list上,并激活当前cpu的软中断,返回1. 在软中断处理函数net_rx_action中,通过ipi中断通知其他cpu来处理放在其他cpu队列上的skb
如果是当前cpu,或者没有配置RPS,则返回0,在外层函数激活软中断,
并将当前cpu的backlog放入sd->poll_list上,
static int rps_ipi_queued(struct softnet_data *sd)
{
#ifdef CONFIG_RPS
    struct softnet_data *mysd = this_cpu_ptr(&softnet_data);

    if (sd != mysd) {
        sd->rps_ipi_next = mysd->rps_ipi_list;
        mysd->rps_ipi_list = sd;

        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
        return 1;
    }
#endif /* CONFIG_RPS */
    return 0;
}
  1. 执行软中断
    __do_softirq 执行当前cpu上所有软中断
asmlinkage __visible void __do_softirq(void)
{
    MAX_SOFTIRQ_TIME为2ms,如果一直有软中断可以执行2ms
    unsigned long end = jiffies + MAX_SOFTIRQ_TIME;
    unsigned long old_flags = current->flags;
    MAX_SOFTIRQ_RESTART为10,表示可以循环执行10此软中断
    int max_restart = MAX_SOFTIRQ_RESTART;
    struct softirq_action *h;
    bool in_hardirq;
    __u32 pending;
    int softirq_bit;

    /*
     * Mask out PF_MEMALLOC s current task context is borrowed for the
     * softirq. A softirq handled such as network RX might set PF_MEMALLOC
     * again if the socket is related to swap
     */
    current->flags &= ~PF_MEMALLOC;
    取出当前cpu上所有的软中断
    pending = local_softirq_pending();
    account_irq_enter_time(current);

    __local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET);
    in_hardirq = lockdep_softirq_start();

restart:
    /* Reset the pending bitmask before enabling irqs */
    清空当前cpu上所有的软中断
    set_softirq_pending(0);
    执行软中断时打开硬件中断
    local_irq_enable();

    h = softirq_vec;
    遍历执行软中断
    while ((softirq_bit = ffs(pending))) {
        unsigned int vec_nr;
        int prev_count;

        h += softirq_bit - 1;

        vec_nr = h - softirq_vec;
        prev_count = preempt_count();

        kstat_incr_softirqs_this_cpu(vec_nr);

        trace_softirq_entry(vec_nr);
        软中断处理函数,比如 net_rx_action
        h->action(h);
        trace_softirq_exit(vec_nr);
        if (unlikely(prev_count != preempt_count())) {
            pr_err("huh, entered softirq %u %s %p with preempt_count %08x, exited with %08x?\n",
                   vec_nr, softirq_to_name[vec_nr], h->action,
                   prev_count, preempt_count());
            preempt_count_set(prev_count);
        }
        h++;
        pending >>= softirq_bit;
    }

    rcu_bh_qs();
    执行完软中断,关闭硬中断
    local_irq_disable();
    检查执行软中断过程中(开启硬中断)是否有新的软中断被激活
    pending = local_softirq_pending();
    if (pending) {
        如果有新的软中断被激活,并且执行软中断时间不足2ms,
        并且重新执行次数不足10次,则可以再次执行软中断。
        if (time_before(jiffies, end) && !need_resched() &&
            --max_restart)
            goto restart;
        否则只能唤醒软中断处理线程继续处理软中断
        wakeup_softirqd();
    }

    lockdep_softirq_end(in_hardirq);
    account_irq_exit_time(current);
    __local_bh_enable(SOFTIRQ_OFFSET);
    WARN_ON_ONCE(in_interrupt());
    tsk_restore_flags(current, old_flags, PF_MEMALLOC);
}

网络收包软中断处理函数

static void net_rx_action(struct softirq_action *h)
{
    获取percpu的sd
    struct softnet_data *sd = this_cpu_ptr(&softnet_data);
    unsigned long time_limit = jiffies + 2;

    netdev_budget默认值300,可通过sysctl修改
    int budget = netdev_budget;
    void *have;

    local_irq_disable();
    如果sd->poll_list不为空,说明有数据需要处理
    while (!list_empty(&sd->poll_list)) {
        struct napi_struct *n;
        int work, weight;

        /* If softirq window is exhuasted then punt.
         * Allow this to run for 2 jiffies since which will allow
         * an average latency of 1.5/HZ.
         */
        如果budget用完了,或者经过了两个时间片,说明数据包压力过大,还没处理
        完就需要跳出循环,在softnet_break会再次激活软中断(因为执行软中断时已
        经把所有的pending清空了)
        if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
            goto softnet_break;

        local_irq_enable();

        /* Even though interrupts have been re-enabled, this
         * access is safe because interrupts can only add new
         * entries to the tail of this list, and only ->poll()
         * calls can remove this head entry from the list.
         */
        n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);

        have = netpoll_poll_lock(n);

        weight = n->weight;

        /* This NAPI_STATE_SCHED test is for avoiding a race
         * with netpoll's poll_napi().  Only the entity which
         * obtains the lock and sees NAPI_STATE_SCHED set will
         * actually make the ->poll() call.  Therefore we avoid
         * accidentally calling ->poll() when NAPI is not scheduled.
         */
        work = 0;
        只有state为NAPI_STATE_SCHED才会执行poll函数。
        对于non-napi来说,poll函数为process_backlog,处理percpu的input queue上的数据包。
        对于napi来说,poll函数为网卡驱动提供的poll函数,比如ixgbe_poll,分配skb,将skb上送协议栈
        如果poll处理后的结果work小于weight说明没有更多数据需要处理,poll函数中会把napi从链表sd->poll_list删除。
        如果work等于weight说明还有更多数据需要处理,不会删除napi,只是将napi移动到链表尾部
        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
            work = n->poll(n, weight);
            trace_napi_poll(n);
        }

        WARN_ON_ONCE(work > weight);
            work为poll实际处理的数据个数,budget需要减去work
        budget -= work;

        local_irq_disable();

        /* Drivers must not modify the NAPI state if they
         * consume the entire weight.  In such cases this code
         * still "owns" the NAPI instance and therefore can
         * move the instance around on the list at-will.
         */
         如果work等于weight说明还有更多数据需要处理
        if (unlikely(work == weight)) {
            if (unlikely(napi_disable_pending(n))) {
                local_irq_enable();
                napi_complete(n);
                local_irq_disable();
            } else {
                if (n->gro_list) {
                    /* flush too old packets
                     * If HZ < 1000, flush all packets.
                     */
                    local_irq_enable();
                    napi_gro_flush(n, HZ >= 1000);
                    local_irq_disable();
                }
                        将napi移动到链表尾部
                list_move_tail(&n->poll_list, &sd->poll_list);
            }
        }

        netpoll_poll_unlock(have);
    }
out:
    net_rps_action_and_irq_enable(sd);

    return;

softnet_break:
    sd->time_squeeze++;
    __raise_softirq_irqoff(NET_RX_SOFTIRQ);
    goto out;
}

/*
 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
 * Note: called with local irq disabled, but exits with local irq enabled.
 */
如果链表 sd->rps_ipi_list不为空,说明在rps下,将skb放在其他cpu上的percpu队列
上了,所以需要通过ipi中断通知其他cpu,通过smp_call_function_single_async远
程激活其他cpu的软中断,使其他cpu处理数据包
static void net_rps_action_and_irq_enable(struct softnet_data *sd)
{
#ifdef CONFIG_RPS
    struct softnet_data *remsd = sd->rps_ipi_list;

    if (remsd) {
        sd->rps_ipi_list = NULL;

        local_irq_enable();

        /* Send pending IPI's to kick RPS processing on remote cpus. */
        while (remsd) {
            struct softnet_data *next = remsd->rps_ipi_next;

            if (cpu_online(remsd->cpu))
                smp_call_function_single_async(remsd->cpu,
                               &remsd->csd);
            remsd = next;
        }
    } else
#endif
        local_irq_enable();
}

non-napi下的poll函数为 process_backlog

static int process_backlog(struct napi_struct *napi, int quota)
{
    int work = 0;
    struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);

#ifdef CONFIG_RPS
    /* Check if we have pending ipi, its better to send them now,
     * not waiting net_rx_action() end.
     */
    激活其他cpu上的软中断
    if (sd->rps_ipi_list) {
        local_irq_disable();
        net_rps_action_and_irq_enable(sd);
    }
#endif
    napi->weight = weight_p;
    local_irq_disable();
    while (1) {
        struct sk_buff *skb;

        while ((skb = __skb_dequeue(&sd->process_queue))) {
            rcu_read_lock();
            local_irq_enable();
            将skb上送协议栈
            __netif_receive_skb(skb);
            rcu_read_unlock();
            local_irq_disable();
            input_queue_head_incr(sd);
            处理skb的个数达到quota了,说明还有更多数据包需要处理
            if (++work >= quota) {
                local_irq_enable();
                return work;
            }
        }

        rps_lock(sd);
        if (skb_queue_empty(&sd->input_pkt_queue)) {
            /*
             * Inline a custom version of __napi_complete().
             * only current cpu owns and manipulates this napi,
             * and NAPI_STATE_SCHED is the only possible flag set
             * on backlog.
             * We can use a plain write instead of clear_bit(),
             * and we dont need an smp_mb() memory barrier.
             */
            如果input_pkt_queue队列为空,将napi从链表poll_list删除
            list_del(&napi->poll_list);
            napi->state = 0;
            rps_unlock(sd);

            break;
        }
       将input_pkt_queue队列中的skb挂到process_queue上,并清空input_pkt_queue
        skb_queue_splice_tail_init(&sd->input_pkt_queue,
                       &sd->process_queue);
        rps_unlock(sd);
    }
    local_irq_enable();

    return work;
}

NAPI

1.激活软中断

硬件中断到来时调用中断处理函数 ixgbe_msix_clean_rings
ixgbe_msix_clean_rings
    napi_schedule(&q_vector->napi);
____napi_schedule(this_cpu_ptr(&softnet_data), n);
            //将napi添加到per cpu的softnet_data->poll_list中
            list_add_tail(&napi->poll_list, &sd->poll_list);
           //将接收软中断置位
            __raise_softirq_irqoff(NET_RX_SOFTIRQ);

2.执行软中断

__do_softirq
    net_rx_action
        n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
        work = n->poll(n, weight); //即调用 ixgbe_poll
            ixgbe_clean_rx_irq(q_vector, ring)
                skb = ixgbe_fetch_rx_buffer(rx_ring, rx_desc);
                ixgbe_rx_skb(q_vector, skb);
                    napi_gro_receive(&q_vector->napi, skb);
                        //上送协议栈,但如果开启了RPS就走non-NAPI的路径了
                        netif_receive_skb_internal
            /* all work done, exit the polling mode */
            //如果处理的skb小于配额,说明工作已经完成,将napi从poll_list删除
           //清除标志位 NAPI_STATE_SCHED
            napi_complete(napi);
                list_del(&n->poll_list);
                clear_bit(NAPI_STATE_SCHED, &n->state);

如果没有开启RPS,则直接调用__netif_receive_skb上送协议栈了。
如果开启了RPS,则调用get_rps_cpu获取合适的cpu(有可能是本地cpu,也有可能是其他cpu),再调用enqueue_to_backlog将skb放在percpu的队列中,激活相应cpu的软中断

static int netif_receive_skb_internal(struct sk_buff *skb)
{
    int ret;

    net_timestamp_check(netdev_tstamp_prequeue, skb);

    if (skb_defer_rx_timestamp(skb))
        return NET_RX_SUCCESS;

    rcu_read_lock();

#ifdef CONFIG_RPS
    注意使用的是static_key_false进行判断,意思是分支预测为false概率很大
    if (static_key_false(&rps_needed)) {
        struct rps_dev_flow voidflow, *rflow = &voidflow;
        int cpu = get_rps_cpu(skb->dev, skb, &rflow);

        if (cpu >= 0) {
            ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
            rcu_read_unlock();
            return ret;
        }
    }
#endif
    ret = __netif_receive_skb(skb);
    rcu_read_unlock();
    return ret;
}

参考

https://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/



 
上一篇:定位网络丢包内核路径的几种方法


下一篇:图解Linux网络包接收过程