大致题意:
有5*6个灯,每个灯只有亮和灭两种状态,分别用1和0表示。按下一盏灯的按钮,这盏灯包括它周围的四盏灯都会改变状态,0变成1,1变成0。现在给出5*6的矩阵代表当前状态,求一个能全部使灯灭的解。
分析:
题目已经提示我们,按两次和按零次是一样的效果,所以每个灯的解为0或者1。这样我们可以构造一个30*30的方程组,右边的常数列为灯的初始状态。
影响当前灯的状态的按钮有5个
a[i][j]+x[i][j]+x[i][j-1]+x[i-1][j]+x[i][j+1]+x[i][j+1]=0 (mod 2)
x[i][j]+x[i][j-1]+x[i-1][j]+x[i][j+1]+x[i][j+1]=a[i][j] (mod 2)
不难发现,灯的初始状态只影响常数列,与系数矩阵无关,系数矩阵是不变的。
消元的过程中系数也可以对2取模,按n次与按n+2次的效果是一样的。对2取模更方便的运算就是异或了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; int n=30;
int a[35][35],x[35];
int mat[35][35]; void init()//初始化系数矩阵
{
int dx[]= {0,0,-1,0,1};
int dy[]= {0,-1,0,1,0};
for(int i=1; i<=5; i++)
{
for(int j=1; j<=6; j++)
{
for(int k=0; k<5; k++)
{
int x=i+dx[k];
int y=j+dy[k];
if(x>0 && x<=5 && y>0 && y<=6)
mat[(i-1)*6+j][(x-1)*6+y]=1;
}
}
}
} void Gauss(int equ,int var)
{
int row,col;
row=col=1;
while(row<=equ && col<=var)
{
//列非零主
int r=row;
for(int i=row; i<=equ; i++)
if(a[i][col]!=0)
{
r=i;
break;
}
if(r!=row)
{
for(int i=col; i<=var+1; i++)
swap(a[row][i],a[r][i]);
}
if(a[row][col]==0)//说明有*变元
{
col++;
continue;
}
//消元
for(int i=row+1; i<=equ; i++)
{
if(a[i][col]==0) continue;
for(int j=col; j<=var+1; j++)
a[i][j]^=a[row][j];
}
row++;
col++;
}
for(int i=equ; i>=1; i--)
{
x[i]=a[i][var+1];
for(int j=i+1; j<=var; j++)
x[i]^=a[i][j]*x[j];
}
} int main()
{
int t,kase=1;
scanf("%d",&t);
init();
while(t--)
{
memset(a,0,sizeof(a));
for(int i=1; i<=30; i++)
scanf("%d",&a[i][31]);
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
a[i][j]=mat[i][j];
Gauss(n,n);
printf("PUZZLE #%d\n",kase++);
for(int i=1; i<=5; i++)
{
for(int j=1; j<6; j++)
printf("%d ",x[(i-1)*6+j]);
printf("%d\n",x[i*6]);
}
}
return 0;
}