pytorch代码练习

pytorch练习

使用torch.Tensor定义数据 , tensor的意思是张量,是数字各种形式的总称,可以定义数、向量、二维数组和张量。

import torch
# 可以是一个数
x = torch.tensor(666)
print(x)
# 可以是一维数组(向量)
x = torch.tensor([1,2,3,4,5,6])
print(x)
# 可以是二维数组(矩阵)
x = torch.ones(2,3)
print(x)
# 可以是任意维度的数组(张量)
x = torch.ones(2,3,4)
print(x)

可通过多种方法创建tensor

# 创建一个空张量
x = torch.empty(5,3)
print(x)
# 创建一个随机初始化的张量
x = torch.rand(5,3)
print(x)
# 创建一个全0的张量,里面的数据类型为 long
x = torch.zeros(5,3,dtype=torch.long)
print(x)
# 基于现有的tensor,创建一个新tensor,
# 从而可以利用原有的tensor的dtype,device,size之类的属性信息
y = x.new_ones(5,3)   #tensor new_* 方法,利用原来tensor的dtype,device
print(y)
z = torch.randn_like(x, dtype=torch.float)    # 利用原来的tensor的大小,但是重新定义了dtype
print(z)

可使用tensor进行的运算

基本运算,加减乘除,求幂求余

布尔运算,大于小于,最大最小

线性运算,矩阵乘法,求模,求行列式

# 返回 m 中元素的数量
print(m.numel())
# 返回 第0行,第2列的数
print(m[0][2])
# 返回 第1列的全部元素
print(m[:, 1])
# 返回 第0行的全部元素
print(m[0, :])
# Create tensor of numbers from 1 to 5
# 注意这里结果是1到4,没有5
v = torch.arange(1, 5)
print(v)
# Scalar product
m @ v
# Calculated by 1*2 + 2*5 + 3*3 + 4*7
m[[0], :] @ v
# Add a random tensor of size 2x4 to m
m + torch.rand(2, 4)
# 转置,由 2x4 变为 4x2
print(m.t())
# 使用 transpose 也可以达到相同的效果,具体使用方法可以百度
print(m.transpose(0, 1))
# returns a 1D tensor of steps equally spaced points between start=3, end=8 and steps=20
torch.linspace(3, 8, 20)
#输出为tensor([3.0000, 3.2632, 3.5263, 3.7895, 4.0526, 4.3158, 4.5789, 4.8421, 5.1053,5.3684, 5.6316, 5.8947, 6.1579, 6.4211, 6.6842, 6.9474, 7.2105, 7.4737,7.7368, 8.0000])
from matplotlib import pyplot as plt

# matlabplotlib 只能显示numpy类型的数据,下面展示了转换数据类型,然后显示
# 注意 randn 是生成均值为 0, 方差为 1 的随机数
# 下面是生成 1000 个随机数,并按照 100 个 bin 统计直方图
plt.hist(torch.randn(1000).numpy(), 100);
#注意上面转换为numpy的方法
# 当数据非常非常多的时候,正态分布会体现的非常明显
plt.hist(torch.randn(10**6).numpy(), 100);

# 创建两个 1x4 的tensor
a = torch.Tensor([[1, 2, 3, 4]])
b = torch.Tensor([[5, 6, 7, 8]])

# 在 0 方向拼接 (即在 Y 方各上拼接), 会得到 2x4 的矩阵
print( torch.cat((a,b), 0))
# 在 1 方向拼接 (即在 X 方各上拼接), 会得到 1x8 的矩阵
print( torch.cat((a,b), 1))

螺旋数据分类

!wget https://raw.githubusercontent.com/Atcold/pytorch-Deep-Learning/master/res/plot_lib.py

下载plot_lib绘图库到本地,引入基本库,初始化参数。

import random
import torch
from torch import nn, optim
import math
from IPython import display
from plot_lib import plot_data, plot_model, set_default

# 因为colab是支持GPU的,torch 将在 GPU 上运行
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('device: ', device)

# 初始化随机数种子。神经网络的参数都是随机初始化的,
# 不同的初始化参数往往会导致不同的结果,当得到比较好的结果时我们通常希望这个结果是可以复现的,
# 因此,在pytorch中,通过设置随机数种子也可以达到这个目的
seed = 12345
random.seed(seed)
torch.manual_seed(seed)

N = 1000  # 每类样本的数量
D = 2  # 每个样本的特征维度
C = 3  # 样本的类别
H = 100  # 神经网络里隐层单元的数量
X = torch.zeros(N * C, D).to(device)
Y = torch.zeros(N * C, dtype=torch.long).to(device)
for c in range(C):
    index = 0
    t = torch.linspace(0, 1, N) # 在[0,1]间均匀的取10000个数,赋给t
    # 下面的代码不用理解太多,总之是根据公式计算出三类样本(可以构成螺旋形)
    # torch.randn(N) 是得到 N 个均值为0,方差为 1 的一组随机数,注意要和 rand 区分开
    inner_var = torch.linspace( (2*math.pi/C)*c, (2*math.pi/C)*(2+c), N) + torch.randn(N) * 0.2
    
    # 每个样本的(x,y)坐标都保存在 X 里
    # Y 里存储的是样本的类别,分别为 [0, 1, 2]
    for ix in range(N * c, N * (c + 1)):
        X[ix] = t[index] * torch.FloatTensor((math.sin(inner_var[index]), math.cos(inner_var[index])))
        Y[ix] = c
        index += 1

print("Shapes:")
print("X:", X.size())
print("Y:", Y.size())

使用plot_lib的plot_data函数显示图象。

构建线性模型

learning_rate = 1e-3
lambda_l2 = 1e-5

# nn 包用来创建线性模型
# 每一个线性模型都包含 weight 和 bias
model = nn.Sequential(
    nn.Linear(D, H),
    nn.Linear(H, C)
)
model.to(device) # 把模型放到GPU上

# nn 包含多种不同的损失函数,这里使用的是交叉熵(cross entropy loss)损失函数
criterion = torch.nn.CrossEntropyLoss()

# 这里使用 optim 包进行随机梯度下降(stochastic gradient descent)优化
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=lambda_l2)

# 开始训练
for t in range(1000):
    # 把数据输入模型,得到预测结果
    y_pred = model(X)
    # 计算损失和准确率
    loss = criterion(y_pred, Y)
    score, predicted = torch.max(y_pred, 1)
    acc = (Y == predicted).sum().float() / len(Y)
    print('[EPOCH]: %i, [LOSS]: %.6f, [ACCURACY]: %.3f' % (t, loss.item(), acc))
    display.clear_output(wait=True)

    # 反向传播前把梯度置 0 
    optimizer.zero_grad()
    # 反向传播优化 
    loss.backward()
    # 更新全部参数
    optimizer.step()
print(y_pred.shape)
print(y_pred[10, :])
print(score[10])
print(predicted[10])

使用 print(model) 把模型输出,可以看到有两层:

  • 第一层输入为 2(因为特征维度为主2),输出为 100;
  • 第二层输入为 100 (上一层的输出),输出为 3(类别数)

pytorch代码练习

pytorch代码练习

从上面图示可以看出,线性模型的准确率最高只能达到 50% 左右,对于这样复杂的一个数据分布,线性模型难以实现准确分类。

构建双层神经网络模型

learning_rate = 1e-3
lambda_l2 = 1e-5

# 这里可以看到,和上面模型不同的是,在两层之间加入了一个 ReLU 激活函数
model = nn.Sequential(
    nn.Linear(D, H),
    nn.ReLU(),   #与1代码块的唯一区别,加入了激活函数
    nn.Linear(H, C)
)
model.to(device)

# 下面的代码和之前是完全一样的,这里不过多叙述
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=lambda_l2) # built-in L2

# 训练模型,和之前的代码是完全一样的
for t in range(1000):
    y_pred = model(X)
    loss = criterion(y_pred, Y)
    score, predicted = torch.max(y_pred, 1)
    acc = ((Y == predicted).sum().float() / len(Y))
    print("[EPOCH]: %i, [LOSS]: %.6f, [ACCURACY]: %.3f" % (t, loss.item(), acc))
    display.clear_output(wait=True)
    
    # zero the gradients before running the backward pass.
    optimizer.zero_grad()
    # Backward pass to compute the gradient
    loss.backward()
    # Update params
    optimizer.step()

pytorch代码练习

 

 pytorch代码练习

 

 发现分类效果较好,关键在于其加入了ReLU激活函数。ReLU函数速度快,精度高,逐渐取代了Sigmoid函数。

上一篇:解决网络训练验证过程中显存增加的原因


下一篇:leetcode512. 游戏玩法分析 II(SQL)简单