求1...n中因子最多的数

Problem

求[1..N]中素因子数最多且最小的数n,N充分大。

Solution

将任意自然数n (n>2) 分解

n=p1^k1 * p2^k2 * p3^k3 * ... * Pm^km

p1<p2<...<pm

则n的因子数为 (k1+1)*(k2+1)*...*(km+1)

假设[1..N](n充分大)中因子数最多最小的数为n,则显然可见下面两个结论

(1)n的素因子连续即 n=2^k1*3^k2*5^k3 ...

(2)k1 >= k2 >= k3 >= ... >= km

由这两个必要条件,可以得到一个算法:DFS

上一篇:Mac 上有哪些比较有意思的小软件?


下一篇:在 Apple Silicon Mac 上 DFU 模式恢复 macOS 固件