原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=5748
树状数组:
/*
对于普通的LIS:
for(i):1~n LIS[i]=1;
if j<i and a[j]<a[i]
LIS[i]=LIS[j]+1
因此可知LIS转移需要两个条件
1.(j<i) 序号必须在i之前
2.(a[i]>a[j]) 值必须比a[i]小
利用树状数组的顺序操作:{查找的都是已经出现的,序号在前(满足条件1)}
对于每一个值,查找它在数组中的排名,再去寻找小于它的排名的最大的LIS(满足条件2)
这里利用到了排名,因为这样可以最大限度地压缩C数组的空间
*/
#include <bits/stdc++.h>
using namespace std;
const int Max=1e5+;
int A[Max],V[Max],L[Max],C[Max],len;
int lowbit(int x) {return x&(-x);}
int Sum(int x) //求值小于等于x的LIS的最大值
{
int ret=;
while(x>)
{
if(C[x]>ret) ret=C[x];
x-=lowbit(x);
}
return ret;
}
void Add(int x,int d) //值大于等于x的LIS都改为LIS(x)
{
while(x<=len)
{
if(d>C[x]) C[x]=d;
x+=lowbit(x);
}
}
int main()
{
int T;
for(scanf("%d",&T);T;T--)
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&A[i]);
V[i]=A[i];
}
sort(V+,V++n);
len=unique(V+,V++n)-(V+);
memset(C,,sizeof(C));
int ans=,tmp,xu;
for(int i=;i<=n;i++)
{
xu=lower_bound(V+,V++len,A[i])-(V);
tmp=Sum(xu-)+;
L[i]=tmp;
Add(xu,tmp);
}
for(int i=;i<=n;i++)
{
if(i!=) printf(" ");
printf("%d",L[i]);
}
puts("");
}
return ;
}
dp+二分
/*
以dp[x]代表长度为x的LIS,且dp[x]==LIS长度为x的末尾值
每次都往前取dp[x]中最小的一个,当然在保证x尽可能地大的情况下
因为dp[x]是递增的,所以可以二分,l=1,r=当前最长的LIS
求得当前以小于当前a[i]的最长LIS
*/
#include <bits/stdc++.h>
using namespace std;
const int Max=1e5+;
int A[Max];
int dp[Max];
int LIS[Max];
void Get_lis(int n)
{
int i,j,l,r,mid,ans;
dp[]=A[];
int len=;
for(i=;i<=n;i++)
{
if(dp[len]<A[i]) j=++len;
else
{
l=;r=len;
ans=;
while(l<=r)
{
mid=(l+r)>>;
if(A[i]>dp[mid]&&A[i]<=dp[mid+])
{
ans=mid;break;
}
else if(A[i]>dp[mid]) l=mid+;
else r=mid-;
}
j=ans+;
}
dp[j]=A[i];
LIS[i]=j;
}
}
int main()
{
int T;
for(scanf("%d",&T);T;T--)
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&A[i]);
dp[i]=;
}
LIS[]=;
Get_lis(n);
for(int i=;i<=n;i++)
{
if(i!=) printf(" ");
printf("%d",LIS[i]);
}
puts("");
}
return ;
}
其实还有一种单调队列求最长上升子序列的方法,可是不能用来解这道题
/*
无解。。。
单调队列只能求出总体的LIS长度
*/
#include <bits/stdc++.h>
using namespace std;
const int Max=1e5+;
int que[Max];
int main()
{
int T;
for(scanf("%d",&T);T;T--)
{
int n,x,top=;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d",&x);
if(x>que[top]||top==)
{
que[++top]=x;
}
else
{
int l=,r=top,mid,ans;
ans=;
while(l<=r)
{
mid=l+(r-l)/;
if(que[mid]<x) l=mid+;
else r=mid-,ans=mid;
}
que[ans]=x;
}
}
cout<<top<<endl;
}
return ;
}