对TCP的三次握手和系统调用深度解析

一、TCP连接建立的三次握手过程

TCP提供一种面向连接的、可靠的字节流服务。面向连接意味着两个使用TCP的应用(通常是一个客户和一个服务器)在彼此交换数据包之前必须先建立一个TCP连接。

对TCP的三次握手和系统调用深度解析

三种状态

SYN_SENT
     在服务端监听后,客户端 socket 执行 connect 连接时,客户端发送 SYN 报文,此时客户端就进入 SYN_SENT 状态,等待服务端的确认。
SYN_RCVD
     表示服务端接受到了 SYN 报文,在正常情况下,这个状态是服务器端的 socket 在建立 TCP 连接时的三次握手会话过程中的一个中间状态,很短暂,因为一般来说会立即回复一个 ACK ,当收到客户端的 ACK 报文后,它会进入到 ESTABLISHED 状态。
ESTABLISHED
    表示连接已经建立了。

 

三次握手的过程

(1)第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。

(2)第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。

(3)第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。

经过上面三个步骤交换三个报文段之后, 就建立起了一个 TCP 连接, 这也被称为 三次握手, 三次握手的重点在于每次报文段的交换过程中, 都在数据包里包含了特殊的信息 :各自的初始序列号, 简单来说, 在经历了:

对TCP的三次握手和系统调用深度解析

 

 

 的过程, 完成了 TCP 的建立, 完成了三次握手, 而三次握手的本质, 握的是各自的序列号。

二、TCP相关的接口定义

      由前面的实验可知,可以通过追踪与TCP连接相关的socket、connect、listen、accept函数的系统调用,我们可以发现相应的socket系统调用函数都在 net/socket.c目录下,其中socket接口函数都定义在SYSCALL_DEFINE接口里,找到主要的相关SYSCALL_DEFINE定义如下:

SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
{
    return __sys_socket(family, type, protocol);
}

SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
{
    return __sys_bind(fd, umyaddr, addrlen);
}

SYSCALL_DEFINE2(listen, int, fd, int, backlog)
{
    return __sys_listen(fd, backlog);
}


SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
        int __user *, upeer_addrlen)
{
    return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
}

SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
        int, addrlen)
{
    return __sys_connect(fd, uservaddr, addrlen);
}

SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
        int __user *, usockaddr_len)
{
    return __sys_getsockname(fd, usockaddr, usockaddr_len);
}

SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
        int __user *, usockaddr_len)
{
    return __sys_getpeername(fd, usockaddr, usockaddr_len);
}


SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
        unsigned int, flags)
{
    return __sys_sendto(fd, buff, len, flags, NULL, 0);
}

SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
        unsigned int, flags)
{
    return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
}

三、探究TCP三次握手过程

我们通过查看源代码来分析三次握手的详细过程:

1、第一次握手:

客户端发起SYN请求,是通过调用connect发起连接,源码如下:

int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
{
    struct socket *sock;
    struct sockaddr_storage address;
    int err, fput_needed;
    //得到socket对象
    sock = sockfd_lookup_light(fd, &err, &fput_needed);
    if (!sock)
        goto out;
    //将地址对象从用户空间拷贝到内核空间
    err = move_addr_to_kernel(uservaddr, addrlen, &address);
    if (err < 0)
        goto out_put;
    //内核相关
    err =
        security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
    if (err)
        goto out_put;
    //对于流式套接字,sock->ops为 inet_stream_ops -->inet_stream_connect

    //对于数据报套接字,sock->ops为 inet_dgram_ops --> inet_dgram_connect
    err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
                 sock->file->f_flags);
out_put:
    fput_light(sock->file, fput_needed);
out:
    return err;
}

该函数一共做了三件事:

(1)根据文件描述符找到指定的socket对象;

(2)将地址信息从用户空间拷贝到内核空间;

(3)调用指定类型套接字的connect函数。

对应流式套接字的connect函数是inet_stream_connect,如下:

int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
            int addr_len, int flags)
{
    int err;
 
    lock_sock(sock->sk);
    err = __inet_stream_connect(sock, uaddr, addr_len, flags);
    release_sock(sock->sk);
    return err;
}
 
/*
 *    Connect to a remote host. There is regrettably still a little
 *    TCP 'magic' in here.
 */
 
//1. 检查socket地址长度和使用的协议族。
//2. 检查socket的状态,必须是SS_UNCONNECTED或SS_CONNECTING。
//3. 调用tcp_v4_connect()来发送SYN包。
//4. 等待后续握手的完成:
int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr,
              int addr_len, int flags)
{
    struct sock *sk = sock->sk;
    int err;
    long timeo;
 
    if (addr_len < sizeof(uaddr->sa_family))
        return -EINVAL;
 
    //检查协议族
    if (uaddr->sa_family == AF_UNSPEC) {
        err = sk->sk_prot->disconnect(sk, flags);
        sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
        goto out;
    }
 
    switch (sock->state) {
    default:
        err = -EINVAL;
        goto out;
    case SS_CONNECTED:
        //已经是连接状态
        err = -EISCONN;
        goto out;
    case SS_CONNECTING:
        //正在连接
        err = -EALREADY;
        /* Fall out of switch with err, set for this state */
        break;
    case SS_UNCONNECTED:
        err = -EISCONN;
        if (sk->sk_state != TCP_CLOSE)
            goto out;
 
        //对于流式套接字,sock->ops为 inet_stream_ops -->         inet_stream_connect  --> tcp_prot  --> tcp_v4_connect
 
        //对于数据报套接字,sock->ops为 inet_dgram_ops --> inet_dgram_connect           --> udp_prot  --> ip4_datagram_connect
        err = sk->sk_prot->connect(sk, uaddr, addr_len);
        if (err < 0)
            goto out;
 
        //协议方面的工作已经处理完成了,但是自己的一切工作还没有完成,所以切换至正在连接中
        sock->state = SS_CONNECTING;
 
        /* Just entered SS_CONNECTING state; the only
         * difference is that return value in non-blocking
         * case is EINPROGRESS, rather than EALREADY.
         */
        err = -EINPROGRESS;
        break;
    }
 
    //获取阻塞时间timeo。如果socket是非阻塞的,则timeo是0
    //connect()的超时时间为sk->sk_sndtimeo,在sock_init_data()中初始化为MAX_SCHEDULE_TIMEOUT,表示无限等待,可以通过SO_SNDTIMEO选项来修改
    timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
 
    if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
        int writebias = (sk->sk_protocol == IPPROTO_TCP) &&
                tcp_sk(sk)->fastopen_req &&
                tcp_sk(sk)->fastopen_req->data ? 1 : 0;
 
        /* Error code is set above */
 
    //如果socket是非阻塞的,那么就直接返回错误码-EINPROGRESS。
    //如果socket为阻塞的,就调用inet_wait_for_connect(),通过睡眠来等待。在以下三种情况下会被唤醒:
    //(1) 使用SO_SNDTIMEO选项时,睡眠时间超过设定值,返回0。connect()返回错误码-EINPROGRESS。
    //(2) 收到信号,返回剩余的等待时间。connect()返回错误码-ERESTARTSYS或-EINTR。
    //(3) 三次握手成功,sock的状态从TCP_SYN_SENT或TCP_SYN_RECV变为TCP_ESTABLISHED,
    if (!timeo || !inet_wait_for_connect(sk, timeo, writebias))
            goto out;
 
        err = sock_intr_errno(timeo);
        //进程收到信号,如果err为-ERESTARTSYS,接下来库函数会重新调用connect()
        if (signal_pending(current))
            goto out;
    }
 
    /* Connection was closed by RST, timeout, ICMP error
     * or another process disconnected us.
     */
    if (sk->sk_state == TCP_CLOSE)
        goto sock_error;
 
    /* sk->sk_err may be not zero now, if RECVERR was ordered by user
     * and error was received after socket entered established state.
     * Hence, it is handled normally after connect() return successfully.
     */
 
    //更新socket状态为连接已建立
    sock->state = SS_CONNECTED;
 
    //清除错误码
    err = 0;
out:
    return err;
 
sock_error:
    err = sock_error(sk) ? : -ECONNABORTED;
    sock->state = SS_UNCONNECTED;
 
    //如果使用的是TCP,则sk_prot为tcp_prot,disconnect为tcp_disconnect()
    if (sk->sk_prot->disconnect(sk, flags))
        //如果失败
        sock->state = SS_DISCONNECTING;
    goto out;
}

下面是tcp_connect函数的源代码:

/* Build a SYN and send it off. */
//由tcp_v4_connect()->tcp_connect()->tcp_transmit_skb()发送,并置为TCP_SYN_SENT.
int tcp_connect(struct sock *sk)
{
    struct tcp_sock *tp = tcp_sk(sk);
    struct sk_buff *buff;
    int err;
 
    //初始化传输控制块中与连接相关的成员
    tcp_connect_init(sk);
 
    if (unlikely(tp->repair)) {
        tcp_finish_connect(sk, NULL);
        return 0;
    }
    //分配skbuff   --> 为SYN段分配报文并进行初始化
    buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
    if (unlikely(!buff))
        return -ENOBUFS;
 
    //构建syn报文
    
    //在函数tcp_v4_connect中write_seq已经被初始化随机值
    tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
    
    tp->retrans_stamp = tcp_time_stamp;
 
    //将报文添加到发送队列上
    tcp_connect_queue_skb(sk, buff);
 
    //显式拥塞通告 ---> 
    //路由器在出现拥塞时通知TCP。当TCP段传递时,路由器使用IP首部中的2位来记录拥塞,当TCP段到达后,
    //接收方知道报文段是否在某个位置经历过拥塞。然而,需要了解拥塞发生情况的是发送方,而非接收方。因
    //此,接收方使用下一个ACK通知发送方有拥塞发生,然后,发送方做出响应,缩小自己的拥塞窗口。
    tcp_ecn_send_syn(sk, buff);
 
    /* Send off SYN; include data in Fast Open. */
    err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
 
          //构造tcp头和ip头并发送
          tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
    if (err == -ECONNREFUSED)
        return err;
 
    /* We change tp->snd_nxt after the tcp_transmit_skb() call
     * in order to make this packet get counted in tcpOutSegs.
     */
    tp->snd_nxt = tp->write_seq;
    tp->pushed_seq = tp->write_seq;
    TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
 
    /* Timer for repeating the SYN until an answer. */
 
    //启动重传定时器
    inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
                  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
    return 0;
}

 

2、第二次握手:服务端接收SYN并处理

数据到达网卡的时候,对于TCP协议,将大致要经过这个一个调用链:

  网卡驱动 ---> netif_receive_skb() ---> ip_rcv() ---> ip_local_deliver_finish() ---> tcp_v4_rcv()

下面直接看tcp_v4_rcv():

/*
 *    From tcp_input.c
 */
 
//网卡驱动-->netif_receive_skb()--->ip_rcv()--->ip_local_deliver_finish()---> tcp_v4_rcv()
int tcp_v4_rcv(struct sk_buff *skb)
{
    struct net *net = dev_net(skb->dev);
    const struct iphdr *iph;
    const struct tcphdr *th;
    bool refcounted;
    struct sock *sk;
    int ret;
 
    //如果不是发往本地的数据包,则直接丢弃
    if (skb->pkt_type != PACKET_HOST)
        goto discard_it;
 
    /* Count it even if it's bad */
    __TCP_INC_STATS(net, TCP_MIB_INSEGS);
 
 
    ////包长是否大于TCP头的长度
    if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
        goto discard_it;
 
    //tcp头   --> 不是很懂为何老是获取tcp头
    th = (const struct tcphdr *)skb->data;
 
    if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
        goto bad_packet;
    
    if (!pskb_may_pull(skb, th->doff * 4))
        goto discard_it;
 
    /* An explanation is required here, I think.
     * Packet length and doff are validated by header prediction,
     * provided case of th->doff==0 is eliminated.
     * So, we defer the checks. */
 
    if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
        goto csum_error;
    
    //得到tcp的头  --> 不是很懂为何老是获取tcp头
    th = (const struct tcphdr *)skb->data;
 
    //得到ip报文头
    iph = ip_hdr(skb);
    /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
     * barrier() makes sure compiler wont play fool^Waliasing games.
     */
    memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
        sizeof(struct inet_skb_parm));
    barrier();
 
    TCP_SKB_CB(skb)->seq = ntohl(th->seq);
    TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
                    skb->len - th->doff * 4);
    TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
    TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
    TCP_SKB_CB(skb)->tcp_tw_isn = 0;
    TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
    TCP_SKB_CB(skb)->sacked     = 0;
 
lookup:
    //根据源端口号,目的端口号和接收的interface查找sock对象------>先在建立连接的哈希表中查找------>如果没找到就从监听哈希表中找 
 
    //对于建立过程来讲肯是监听哈希表中才能找到
    sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
                   th->dest, &refcounted);
    
    //如果找不到处理的socket对象,就把数据报丢掉
    if (!sk)
        goto no_tcp_socket;
 
process:
 
    //检查sock是否处于半关闭状态
    if (sk->sk_state == TCP_TIME_WAIT)
        goto do_time_wait;
 
    if (sk->sk_state == TCP_NEW_SYN_RECV) {
        struct request_sock *req = inet_reqsk(sk);
        struct sock *nsk;
 
        sk = req->rsk_listener;
        if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
            sk_drops_add(sk, skb);
            reqsk_put(req);
            goto discard_it;
        }
        if (unlikely(sk->sk_state != TCP_LISTEN)) {
            inet_csk_reqsk_queue_drop_and_put(sk, req);
            goto lookup;
        }
        /* We own a reference on the listener, increase it again
         * as we might lose it too soon.
         */
        sock_hold(sk);
        refcounted = true;
        nsk = tcp_check_req(sk, skb, req, false);
        if (!nsk) {
            reqsk_put(req);
            goto discard_and_relse;
        }
        if (nsk == sk) {
            reqsk_put(req);
        } else if (tcp_child_process(sk, nsk, skb)) {
            tcp_v4_send_reset(nsk, skb);
            goto discard_and_relse;
        } else {
            sock_put(sk);
            return 0;
        }
    }
    if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
        __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
        goto discard_and_relse;
    }
 
    if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
        goto discard_and_relse;
 
    if (tcp_v4_inbound_md5_hash(sk, skb))
        goto discard_and_relse;
 
    nf_reset(skb);
 
    if (tcp_filter(sk, skb))
        goto discard_and_relse;
    
    //tcp头部   --> 不是很懂为何老是获取tcp头
    th = (const struct tcphdr *)skb->data;
    iph = ip_hdr(skb);
 
    skb->dev = NULL;
 
    //如果socket处于监听状态 --> 我们重点关注这里
    if (sk->sk_state == TCP_LISTEN) {
        ret = tcp_v4_do_rcv(sk, skb);
        goto put_and_return;
    }
 
    sk_incoming_cpu_update(sk);
 
    bh_lock_sock_nested(sk);
    tcp_segs_in(tcp_sk(sk), skb);
    ret = 0;
    
    //查看是否有用户态进程对该sock进行了锁定
    //如果sock_owned_by_user为真,则sock的状态不能进行更改
    if (!sock_owned_by_user(sk)) {
        if (!tcp_prequeue(sk, skb))
            //-------------------------------------------------------->
            ret = tcp_v4_do_rcv(sk, skb);
    } else if (tcp_add_backlog(sk, skb)) {
        goto discard_and_relse;
    }
    bh_unlock_sock(sk);
 
put_and_return:
    if (refcounted)
        sock_put(sk);
 
    return ret;
 
no_tcp_socket:
    if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
        goto discard_it;
 
    if (tcp_checksum_complete(skb)) {
csum_error:
        __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
bad_packet:
        __TCP_INC_STATS(net, TCP_MIB_INERRS);
    } else {
        tcp_v4_send_reset(NULL, skb);
    }
 
discard_it:
    /* Discard frame. */
    kfree_skb(skb);
    return 0;
 
discard_and_relse:
    sk_drops_add(sk, skb);
    if (refcounted)
        sock_put(sk);
    goto discard_it;
 
do_time_wait:
    if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
        inet_twsk_put(inet_twsk(sk));
        goto discard_it;
    }
 
    if (tcp_checksum_complete(skb)) {
        inet_twsk_put(inet_twsk(sk));
        goto csum_error;
    }
    switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
    case TCP_TW_SYN: {
        struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
                            &tcp_hashinfo, skb,
                            __tcp_hdrlen(th),
                            iph->saddr, th->source,
                            iph->daddr, th->dest,
                            inet_iif(skb));
        if (sk2) {
            inet_twsk_deschedule_put(inet_twsk(sk));
            sk = sk2;
            refcounted = false;
            goto process;
        }
        /* Fall through to ACK */
    }
    case TCP_TW_ACK:
        tcp_v4_timewait_ack(sk, skb);
        break;
    case TCP_TW_RST:
        tcp_v4_send_reset(sk, skb);
        inet_twsk_deschedule_put(inet_twsk(sk));
        goto discard_it;
    case TCP_TW_SUCCESS:;
    }
    goto discard_it;
}

调用tcp_v4_send_synack回复客户端ack。

//向客户端发送SYN+ACK报文
static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
                  struct flowi *fl,
                  struct request_sock *req,
                  struct tcp_fastopen_cookie *foc,
                  enum tcp_synack_type synack_type)
{
    const struct inet_request_sock *ireq = inet_rsk(req);
    struct flowi4 fl4;
    int err = -1;
    struct sk_buff *skb;
 
    /* First, grab a route. */
 
    //查找到客户端的路由
    if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
        return -1;
 
    //根据路由、传输控制块、连接请求块中的构建SYN+ACK段
    skb = tcp_make_synack(sk, dst, req, foc, synack_type);
 
    //生成SYN+ACK段成功
    if (skb) {
 
        //生成校验码
        __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
 
 
        //生成IP数据报并发送出去
        err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
                        ireq->ir_rmt_addr,
                        ireq->opt);
        err = net_xmit_eval(err);
    }
 
    return err;
}

3、第三次握手:客户端收到SYN+ACK报文并回复。

    case TCP_SYN_SENT:
        tp->rx_opt.saw_tstamp = 0;
 
        //处理SYN_SENT状态下接收到的TCP段
        queued = tcp_rcv_synsent_state_process(sk, skb, th);
        if (queued >= 0)
            return queued;
 
        /* Do step6 onward by hand. */
 
        //处理完第二次握手后,还需要处理带外数据
        tcp_urg(sk, skb, th);
        __kfree_skb(skb);
 
        //检测是否有数据需要发送
        tcp_data_snd_check(sk);
        return 0;
    }

 

 

4、服务器端接收ACK报文  

最后服务器端还需要接受ACK报文并进入到ESTABLISHED状态,三次握手才算最终完成。


case TCP_SYN_RECV:
if (!acceptable)
return 1;

if (!tp->srtt_us)
tcp_synack_rtt_meas(sk, req);

/* Once we leave TCP_SYN_RECV, we no longer need req
* so release it.
*/
if (req) {
inet_csk(sk)->icsk_retransmits = 0;
reqsk_fastopen_remove(sk, req, false);
} else {
/* Make sure socket is routed, for correct metrics. */

//建立路由,初始化拥塞控制模块
icsk->icsk_af_ops->rebuild_header(sk);
tcp_init_congestion_control(sk);

tcp_mtup_init(sk);
tp->copied_seq = tp->rcv_nxt;
tcp_init_buffer_space(sk);
}
smp_mb();
//正常的第三次握手,设置连接状态为TCP_ESTABLISHED
tcp_set_state(sk, TCP_ESTABLISHED);
sk->sk_state_change(sk);

/* Note, that this wakeup is only for marginal crossed SYN case.
* Passively open sockets are not waked up, because
* sk->sk_sleep == NULL and sk->sk_socket == NULL.
*/

//状态已经正常,唤醒那些等待的线程
if (sk->sk_socket)
sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);

tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);

if (tp->rx_opt.tstamp_ok)
tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;

if (req) {
/* Re-arm the timer because data may have been sent out.
* This is similar to the regular data transmission case
* when new data has just been ack'ed.
*
* (TFO) - we could try to be more aggressive and
* retransmitting any data sooner based on when they
* are sent out.
*/
tcp_rearm_rto(sk);
} else
tcp_init_metrics(sk);

if (!inet_csk(sk)->icsk_ca_ops->cong_control)
tcp_update_pacing_rate(sk);

/* Prevent spurious tcp_cwnd_restart() on first data packet */

//更新最近一次发送数据包的时间
tp->lsndtime = tcp_time_stamp;

tcp_initialize_rcv_mss(sk);

//计算有关TCP首部预测的标志
tcp_fast_path_on(tp);
break;

上一篇:初识python之词组截取及翻译


下一篇:棋牌聊天室