目录
- Outline
- Save/load weights
- Save/load entire model
- saved_model
Outline
save/load weights # 记录部分信息
save/load entire model # 记录所有信息
saved_model # 通用,包括Pytorch、其他语言
Save/load weights
- 保存部分信息
# Save the weights model.save_weights('./checkpoints/my_checkpoint') # Restore the weights model = create_model() model.load_weights('./checkpoints/my_checkpoint') loss, acc = model.evaluate(test_images, test_labels) print(f'Restored model, accuracy: {100*acc:5.2f}')
import tensorflow as tf from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics def preprocess(x, y): """ x is a simple image, not a batch """ x = tf.cast(x, dtype=tf.float32) / 255. x = tf.reshape(x, [28 * 28]) y = tf.cast(y, dtype=tf.int32) y = tf.one_hot(y, depth=10) return x, y batchsz = 128 (x, y), (x_val, y_val) = datasets.mnist.load_data() print('datasets:', x.shape, y.shape, x.min(), x.max()) db = tf.data.Dataset.from_tensor_slices((x, y)) db = db.map(preprocess).shuffle(60000).batch(batchsz) ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val)) ds_val = ds_val.map(preprocess).batch(batchsz) sample = next(iter(db)) print(sample[0].shape, sample[1].shape) network = Sequential([ layers.Dense(256, activation='relu'), layers.Dense(128, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(32, activation='relu'), layers.Dense(10) ]) network.build(input_shape=(None, 28 * 28)) network.summary() network.compile(optimizer=optimizers.Adam(lr=0.01), loss=tf.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy']) network.fit(db, epochs=3, validation_data=ds_val, validation_freq=2) network.evaluate(ds_val) network.save_weights('weights.ckpt') print('saved weights.') del network network = Sequential([ layers.Dense(256, activation='relu'), layers.Dense(128, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(32, activation='relu'), layers.Dense(10) ]) network.compile(optimizer=optimizers.Adam(lr=0.01), loss=tf.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy']) network.load_weights('weights.ckpt') print('loaded weights!') network.evaluate(ds_val)
datasets: (60000, 28, 28) (60000,) 0 255 (128, 784) (128, 10) Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) multiple 200960 _________________________________________________________________ dense_1 (Dense) multiple 32896 _________________________________________________________________ dense_2 (Dense) multiple 8256 _________________________________________________________________ dense_3 (Dense) multiple 2080 _________________________________________________________________ dense_4 (Dense) multiple 330 ================================================================= Total params: 244,522 Trainable params: 244,522 Non-trainable params: 0 _________________________________________________________________ Epoch 1/3 469/469 [==============================] - 5s 12ms/step - loss: 0.2876 - accuracy: 0.8335 Epoch 2/3 469/469 [==============================] - 5s 11ms/step - loss: 0.1430 - accuracy: 0.9551 - val_loss: 0.1397 - val_accuracy: 0.9634 Epoch 3/3 469/469 [==============================] - 4s 9ms/step - loss: 0.1155 - accuracy: 0.9681 79/79 [==============================] - 1s 8ms/step - loss: 0.1344 - accuracy: 0.9654 saved weights. loaded weights! 79/79 [==============================] - 1s 13ms/step - loss: 0.1344 - accuracy: 0.9593 [0.13439734456132318, 0.9654]
Save/load entire model
- 完美保存所有信息
network.save('model.h5') print('saved total model.') del network print('load model from file') network = tf.keras.models.load_model('model.h5') network.evaluate(x_val, y_val)
import tensorflow as tf from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics def preprocess(x, y): """ x is a simple image, not a batch """ x = tf.cast(x, dtype=tf.float32) / 255. x = tf.reshape(x, [28 * 28]) y = tf.cast(y, dtype=tf.int32) y = tf.one_hot(y, depth=10) return x, y batchsz = 128 (x, y), (x_val, y_val) = datasets.mnist.load_data() print('datasets:', x.shape, y.shape, x.min(), x.max()) db = tf.data.Dataset.from_tensor_slices((x, y)) db = db.map(preprocess).shuffle(60000).batch(batchsz) ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val)) ds_val = ds_val.map(preprocess).batch(batchsz) sample = next(iter(db)) print(sample[0].shape, sample[1].shape) network = Sequential([ layers.Dense(256, activation='relu'), layers.Dense(128, activation='relu'), layers.Dense(64, activation='relu'), layers.Dense(32, activation='relu'), layers.Dense(10) ]) network.build(input_shape=(None, 28 * 28)) network.summary() network.compile(optimizer=optimizers.Adam(lr=0.01), loss=tf.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy']) network.fit(db, epochs=3, validation_data=ds_val, validation_freq=2) network.evaluate(ds_val) network.save('model.h5') print('saved total model.') del network print('load model from file') network1 = tf.keras.models.load_model('model.h5') network1.compile(optimizer=optimizers.Adam(lr=0.01), loss=tf.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy']) x_val = tf.cast(x_val, dtype=tf.float32) / 255. x_val = tf.reshape(x_val, [-1, 28 * 28]) y_val = tf.cast(y_val, dtype=tf.int32) y_val = tf.one_hot(y_val, depth=10) ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val)).batch(128) network1.evaluate(ds_val)
datasets: (60000, 28, 28) (60000,) 0 255 (128, 784) (128, 10) Model: "sequential_4" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_20 (Dense) multiple 200960 _________________________________________________________________ dense_21 (Dense) multiple 32896 _________________________________________________________________ dense_22 (Dense) multiple 8256 _________________________________________________________________ dense_23 (Dense) multiple 2080 _________________________________________________________________ dense_24 (Dense) multiple 330 ================================================================= Total params: 244,522 Trainable params: 244,522 Non-trainable params: 0 _________________________________________________________________ Epoch 1/3 469/469 [==============================] - 6s 13ms/step - loss: 0.2851 - accuracy: 0.8405 Epoch 2/3 469/469 [==============================] - 6s 13ms/step - loss: 0.1365 - accuracy: 0.9580 - val_loss: 0.1422 - val_accuracy: 0.9590 Epoch 3/3 469/469 [==============================] - 5s 11ms/step - loss: 0.1130 - accuracy: 0.9661 79/79 [==============================] - 1s 10ms/step - loss: 0.1201 - accuracy: 0.9714 saved total model. load model from file W0525 16:44:50.178785 4587234752 hdf5_format.py:266] Sequential models without an `input_shape` passed to the first layer cannot reload their optimizer state. As a result, your model isstarting with a freshly initialized optimizer. 79/79 [==============================] - 1s 7ms/step - loss: 0.1201 - accuracy: 0.9672 [0.12005392337660747, 0.9714]
saved_model
通用,包括Pytorch、其他语言
用于工业环境的部署
tf.saved_model.save(m, '/tmp/saved_model/') imported = tf.saved_model.load(path) f = imported.signatures['serving_default'] print(f(x=tf.ones([1, 28, 28, 3])))