//---------------------------15/04/15----------------------------
//Bridge 桥接模式----对象结构型模式
/*
1:意图:将抽象部分与它的实现部分分离,使它们都可以独立地变化。
2:别名:Handle
3:动机
4:适用性:
1>你不希望在抽象和它的实现部分之间有一个固定的绑定关系。比如在程序运行时刻实现部分
应该可以被选择或切换。
2>类的抽象以及它的实现都应该可以通过生成子类的方法加以扩充。这时,Bridge模式使你
可以对不同的抽象接口和实现部分进行组合,并分别对它们进行扩充。
3>对一个抽象的实现部分的修改应对客户不产生影响,即客户的代码不必重新编译。
4>你想对客户完全隐藏抽象的实现部分。在c++中,类的表示在类接口中时可见的。
5>由许多类要生成,这时要把对象分解成两个部分。
6>你想在多个对象间共享实现,但同时要求客户并不知道这一点,
5:结构:
client
|
|------->Abstraction:
imp----------------------------->Implementor:
Operation() OperationImp()
{ imp->OperationImp();} |
| |
| -----------------------------
RefinedAbstraction: | |
ConcreteImplementorA: ConcreteImplementorB:
OperationImp() OperationImp()
6:参与者:
1>Abstraction:
1)定义抽象类的接口。
2)维护一个指向Implementor类型对象的指针。
2>RefinedAbstraction:
扩充由Abstraction定义的接口。
3>Implementor:
定义实现类的接口,该接口不一定要与Abstraction的接口完全一致;事实上这两个接口可以
完全不同。一般来讲,Implementor接口仅提供基础操作,而Abstractor则定义了基于这些
操作的较高层次的操作。
4>ConcreteImplementor:
实现了Implementor接口并定义它的具体实现。
7:协作:
Abstraction将client的请求转发给它的Implementor对象。
8:效果:
1>分离接口及其实现部分。一个实现未必不变地绑定在一个接口上。抽象类的实现可以在运行时刻进行
配置,一个对象甚至可以在运行时刻改变它的实现。
将Abstraction与Implementor分离有助于降低对实现部分编译时刻的依赖性,当改变一个实现类
时,并不需要重新编译Abstraction类和它的客户程序。为了保证一个类库的不同版本之间的二进制
兼容性,一定要有这个性质。
另外接口和实现分离有助于分层,从而产生更好的结构化系统,系统的高层部分仅需知道Abstraction
和Implementor即可。
2>提高可扩充性。你可以独立地对Abstraction和Implementor层次结构进行扩充。
3>实现细节对客户透明。你可以对客户隐藏实现细节。
9:实现:
1>仅有一个Implementor,在仅有一个实现的时候,没有必要创建一个抽象的Implemntor类,这是
Bridge模式的退化情况;在Abstraction与Implementor之间有一种一对一的关系。尽管如此,
如果你希望改变一个类的实现不会影响已有的客户程序时,模式的分离机制还是必要的。
2>创建正确的Implementor对象。当存在多个Implementor类的时候,如何确定创建哪一个
Implementor类:
1)传递参数来选择构造相应的ConcreteImplementor类。
2)交给另外一个对象,通常是一个factory对象,向factory申请一个对象。
10:代码示例: */
//Abstraction:定义了Window应有的接口
class Window
{
public:
Window(View* contents);
virtual
void DrawContents();
virtual
void Open();
virtual
void Close();
virtual
void Iconify();
virtual
void Deiconify();
virtual
void SetOrigin(const Point& at);
virtual
void SetExtent(const Point& extent);
virtual
void Raise();
virtual
void Lower();
virtual
void DrawLine(const Point&,const Point);
virtual
void DrawRect(const Point&,const Point);
virtual
void DrawPolygon(const Point[],int n);
virtual
void DrawText(constchar*,
const Point&);
protected:
WindowImp* GetWindowIpm();
View* GetView();
private:
Window* _imp;
View* _contexts;
};
//Implementor:定义了Implementor应有的接口
class WindowImp
{
public:
virtual
;
virtual
;
virtual
;
virtual
;
virtual
;
virtual
void DeviceText(constchar*, Coord, Coord) =
;
virtual
void DeviceBitmap(constchar*, Coord, Coord) =
;
...
protected:
WindowImp();
};
//RefinedAbstraction
class ApplicateionWindow :public Window
{
public:
virtual
void DrawContents();
...
};
void ApplicateionWindow::DrawContents()
{
GetView()->DrawOn(this);
}
//RefinedAbstraction 使用Implementor的接口来画图
class IconWindow:public Window
{
public:
virtual
void DrawContents();
...
private:
const
char* _bitmapName;
};
void IconWindow::DrawContents()
{
WindowImp* imp = GetWindowIpm();
if(imp !=
)
{
imp->DeviceBitmap(_bitmapName,0.0,
0.0);
}
}
//ConcreteImplementor 实现了底层操作。
class XwindowImp :public WindowImp
{
public:
XwindowImp();
virtual
void DeviceRect(Coord, Coord, Coord, Coord);
...
private:
Display* _dpy;
Drawable _winid;
Gc _gc;
};
//ConcreteImplementor
class PMWindowImp :public WindowImp
{
public:
PMWindowImp();
virtual
void DeviceRect(Coord, Coord, Coord, Coord);
...
private:
HPS _hps;
};
void XwindowImp::DeviceRect(Coord x0, Coord y0, Coord x1, Coord y1)
{
int x = round(min(x0, x1));
int y = round(min(y0, y1));
int w = round(abs(x0 - x1));
int h = round(abs(y0 - y1));
XDrawRectangle(_dpy, _winid, _gc, x, y, w, h);
}
void PMWindowImp::DeviceRect(Coord x0, Coord y0, Coord x1, Coord y1)
{
Coord left = min(x0, x1);
Coord right = max(x0, x1);
Coord bottom = min(y0, y1);
Coord top = max(y0, y1);
PPOINTL point[];
point[].x = left;
point[].y = top;
point[].x = right;
point[].y = top;
point[].x = right;
point[].y = bottom;
point[].x = left;
point[].y = bottom;
if(
(GpiBeginPath(_hps,L) ==
false) ||
(GpiSetCurrentPosition(_hps, &point[]) ==false) ||
(GpiPolyLine(_hps,L, point) == GPI_ERROR) ||
(GPIEndPath(_hps) ==false)
)
{
//report error;
}
else
{
GpiStrokePath(_hps,L,
L);
}
}
//使用单例模式的工厂得到WindowImp的实例。
WindowImp* Window::GetWindowIpm()
{
if(_imp ==
)
{
_imp = WindowSystemFactory::Instance()->MakeWindowImp();
}
return _imp;
}