10.函数
求绝对值的函数 abs(x)
也可以在交互式命令行通过 help(abs) 查看abs函数的帮助信息。
调用 abs 函数:
>>> abs(100)
100
>>> abs(-20)
20
>>> abs(12.34)
12.34
比较函数 cmp(x, y)
如果 x<y,返回 -1,如果 x==y,返回 0,如果 x>y,返回 1:
>>> cmp(1, 2)
-1
>>> cmp(2, 1)
1
>>> cmp(3, 3)
0
int()函数:把其他数据类型转换为整数
>>> int('123')
123
>>> int(12.34)
12
str()函数:把其他类型转换成 str
>>> str(123)
'123'
>>> str(1.23)
'1.23'
10.1,编写函数
在Python中,定义一个函数要使用 def 语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用 return 语句返回。
我们以自定义一个求绝对值的 my_abs 函数为例:
def my_abs(x):
if x >= 0:
return x
else:
return -x
请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。
如果没有return语句,函数执行完毕后也会返回结果,只是结果为 None。return None可以简写为return。
10.1,返回多值
函数可以返回多个值吗?答案是肯定的。
比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的坐标:
# math包提供了sin()和 cos()函数,我们先用import引用它:
import math
def move(x, y, step, angle):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny
这样我们就可以同时获得返回值:
>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print x, y
151.961524227 70.0
但其实这只是一种假象,Python函数返回的仍然是单一值:
>>> r = move(100, 100, 60, math.pi / 6)
>>> print r
(151.96152422706632, 70.0)
用print打印返回结果,原来返回值是一个tuple!
但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。
10.3,递归函数
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:
fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n
所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理。
于是,fact(n)用递归的方式写出来就是:
def fact(n):
if n==1:
return 1
return n * fact(n - 1)
上面就是一个递归函数。可以试试:
>>> fact(1)
1
>>> fact(5)
120
>>> fact(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000L
如果我们计算fact(5),可以根据函数定义看到计算过程如下:
===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120
递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。
使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试计算 fact(10000)。
10.4,定义默认参数
定义函数的时候,还可以有默认参数。
例如Python自带的 int() 函数,其实就有两个参数,我们既可以传一个参数,又可以传两个参数:
>>> int('123')
123
>>> int('123', 8)
83
int()函数的第二个参数是转换进制,如果不传,默认是十进制 (base=10),如果传了,就用传入的参数。
可见,函数的默认参数的作用是简化调用,你只需要把必须的参数传进去。但是在需要的时候,又可以传入额外的参数来覆盖默认参数值。
我们来定义一个计算 x 的N次方的函数:
def power(x, n):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
假设计算平方的次数最多,我们就可以把 n 的默认值设定为 2:
def power(x, n=2):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
这样一来,计算平方就不需要传入两个参数了:
>>> power(5)
25
由于函数的参数按从左到右的顺序匹配,所以默认参数只能定义在必需参数的后面:
# OK:
def fn1(a, b=1, c=2):
pass
# Error:
def fn2(a=1, b):
pass
10.5,定义可变参数
如果想让一个函数能接受任意个参数,我们就可以定义一个可变参数:
def fn(*args):
print args
可变参数的名字前面有个 * 号,我们可以传入0个、1个或多个参数给可变参数:
>>> fn()
()
>>> fn('a')
('a',)
>>> fn('a', 'b')
('a', 'b')
>>> fn('a', 'b', 'c')
('a', 'b', 'c')
可变参数也不是很神秘,Python解释器会把传入的一组参数组装成一个tuple传递给可变参数,因此,在函数内部,直接把变量 args 看成一个 tuple 就好了。
定义可变参数的目的也是为了简化调用。假设我们要计算任意个数的平均值,就可以定义一个可变参数:
def average(*args):
...
这样,在调用的时候,可以这样写:
>>> average()
0
>>> average(1, 2)
1.5
>>> average(1, 2, 2, 3, 4)
2.4
11.切片
11.1,对list进行切片
取一个list的部分元素是非常常见的操作。比如,一个list如下:
>>> L = ['Adam', 'Lisa', 'Bart', 'Paul']
取前3个元素,应该怎么做?
笨办法:
>>> [L[0], L[1], L[2]]
['Adam', 'Lisa', 'Bart']
之所以是笨办法是因为扩展一下,取前N个元素就没辙了。
取前N个元素,也就是索引为0-(N-1)的元素,可以用循环:
>>> r = []
>>> n = 3
>>> for i in range(n):
... r.append(L[i])
...
>>> r
['Adam', 'Lisa', 'Bart']
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。
对应上面的问题,取前3个元素,用一行代码就可以完成切片:
>>> L[0:3]
['Adam', 'Lisa', 'Bart']
L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。
如果第一个索引是0,还可以省略:
>>> L[:3]
['Adam', 'Lisa', 'Bart']
也可以从索引1开始,取出2个元素出来:
>>> L[1:3]
['Lisa', 'Bart']
只用一个 : ,表示从头到尾:
>>> L[:]
['Adam', 'Lisa', 'Bart', 'Paul']
因此,L[:]实际上复制出了一个新list。
切片操作还可以指定第三个参数:
>>> L[::2]
['Adam', 'Bart']
第三个参数表示每N个取一个,上面的 L[::2] 会每两个元素取出一个来,也就是隔一个取一个。
把list换成tuple,切片操作完全相同,只是切片的结果也变成了tuple。
11.2,倒序切片
对于list,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L = ['Adam', 'Lisa', 'Bart', 'Paul']
>>> L[-2:]
['Bart', 'Paul']
>>> L[:-2]
['Adam', 'Lisa']
>>> L[-3:-1]
['Lisa', 'Bart']
>>> L[-4:-1:2]
['Adam', 'Bart']
记住倒数第一个元素的索引是-1。倒序切片包含起始索引,不包含结束索引。
11.3,倒序切片
字符串 'xxx'和 Unicode字符串 u'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:
>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[-3:]
'EFG'
>>> 'ABCDEFG'[::2]
'ACEG'
在很多编程语言中,针对字符串提供了很多各种截取函数,其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。
12,迭代
12.1,什么是迭代
在Python中,如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们成为迭代(Iteration)。
在Python中,迭代是通过 for ... in 来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:
for (i=0; i<list.length; i++) {
n = list[i];
}
可以看出,Python的for循环抽象程度要高于Java的for循环。
因为 Python 的 for循环不仅可以用在list或tuple上,还可以作用在其他任何可迭代对象上。
因此,迭代操作就是对于一个集合,无论该集合是有序还是无序,我们用 for 循环总是可以依次取出集合的每一个元素。
注意: 集合是指包含一组元素的数据结构,我们已经介绍的包括:
1. 有序集合:list,tuple,str和unicode;
2. 无序集合:set
3. 无序集合并且具有 key-value 对:dict
而迭代是一个动词,它指的是一种操作,在Python中,就是 for 循环。
迭代与按下标访问数组最大的不同是,后者是一种具体的迭代实现方式,而前者只关心迭代结果,根本不关心迭代内部是如何实现的。
12.2,索引迭代
Python中,迭代永远是取出元素本身,而非元素的索引。
对于有序集合,元素确实是有索引的。有的时候,我们确实想在 for 循环中拿到索引,怎么办?
方法是使用 enumerate() 函数:
>>> L = ['Adam', 'Lisa', 'Bart', 'Paul']
>>> for index, name in enumerate(L):
... print index, '-', name
...
0 - Adam
1 - Lisa
2 - Bart
3 - Paul
使用 enumerate() 函数,我们可以在for循环中同时绑定索引index和元素name。但是,这不是 enumerate() 的特殊语法。实际上,enumerate() 函数把:
['Adam', 'Lisa', 'Bart', 'Paul']
变成了类似:
[(0, 'Adam'), (1, 'Lisa'), (2, 'Bart'), (3, 'Paul')]
因此,迭代的每一个元素实际上是一个tuple:
for t in enumerate(L):
index = t[0]
name = t[1]
print index, '-', name
如果我们知道每个tuple元素都包含两个元素,for循环又可以进一步简写为:
for index, name in enumerate(L):
print index, '-', name
这样不但代码更简单,而且还少了两条赋值语句。
可见,索引迭代也不是真的按索引访问,而是由 enumerate() 函数自动把每个元素变成 (index, element) 这样的tuple,再迭代,就同时获得了索引和元素本身。
12.3,迭代dict的value
我们已经了解了dict对象本身就是可迭代对象,用 for 循环直接迭代 dict,可以每次拿到dict的一个key。
如果我们希望迭代 dict 对象的value,应该怎么做?
dict 对象有一个 values() 方法,这个方法把dict转换成一个包含所有value的list,这样,我们迭代的就是 dict的每一个 value:
d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 }
print d.values()
# [85, 95, 59]
for v in d.values():
print v
# 85
# 95
# 59
如果仔细阅读Python的文档,还可以发现,dict除了values()方法外,还有一个 itervalues() 方法,用 itervalues() 方法替代 values() 方法,迭代效果完全一样:
d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 }
print d.itervalues()
# <dictionary-valueiterator object at 0x106adbb50>
for v in d.itervalues():
print v
# 85
# 95
# 59
那这两个方法有何不同之处呢?
1. values() 方法实际上把一个 dict 转换成了包含 value 的list。
2. 但是 itervalues() 方法不会转换,它会在迭代过程中依次从 dict 中取出 value,所以 itervalues() 方法比 values() 方法节省了生成 list 所需的内存。
3. 打印 itervalues() 发现它返回一个 <dictionary-valueiterator> 对象,这说明在Python中,for 循环可作用的迭代对象远不止 list,tuple,str,unicode,dict等,任何可迭代对象都可以作用于for循环,而内部如何迭代我们通常并不用关心。
如果一个对象说自己可迭代,那我们就直接用 for 循环去迭代它,可见,迭代是一种抽象的数据操作,它不对迭代对象内部的数据有任何要求。
12.4,迭代dict的key和value
我们了解了如何迭代 dict 的key和value,那么,在一个 for 循环中,能否同时迭代 key和value?答案是肯定的。
首先,我们看看 dict 对象的 items() 方法返回的值:
>>> d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 }
>>> print d.items()
[('Lisa', 85), ('Adam', 95), ('Bart', 59)]
可以看到,items() 方法把dict对象转换成了包含tuple的list,我们对这个list进行迭代,可以同时获得key和value:
>>> for key, value in d.items():
... print key, ':', value
...
Lisa : 85
Adam : 95
Bart : 59
和 values() 有一个 itervalues() 类似, items() 也有一个对应的 iteritems(),iteritems() 不把dict转换成list,而是在迭代过程中不断给出 tuple,所以, iteritems() 不占用额外的内存。
13.列表生成式
13.1,生成列表
要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],我们可以用range(1, 11):
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:
>>> L = []
>>> for x in range(1, 11):
... L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
这种写法就是Python特有的列表生成式。利用列表生成式,可以以非常简洁的代码生成 list。
写列表生成式时,把要生成的元素 x * x 放到前面,后面跟 for 循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
13.2,复杂表达式
使用for循环的迭代不仅可以迭代普通的list,还可以迭代dict。
假设有如下的dict:
d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 }
完全可以通过一个复杂的列表生成式把它变成一个 HTML 表格:
tds = ['<tr><td>%s</td><td>%s</td></tr>' % (name, score) for name, score in d.iteritems()]
print '<table>'
print '<tr><th>Name</th><th>Score</th><tr>'
print '\n'.join(tds)
print '</table>'
注:字符串可以通过 % 进行格式化,用指定的参数替代 %s。字符串的join()方法可以把一个 list 拼接成一个字符串。
把打印出来的结果保存为一个html文件,就可以在浏览器中看到效果了:
<table border="1">
<tr><th>Name</th><th>Score</th><tr>
<tr><td>Lisa</td><td>85</td></tr>
<tr><td>Adam</td><td>95</td></tr>
<tr><td>Bart</td><td>59</td></tr>
</table>
13.3,条件过滤
列表生成式的 for 循环后面还可以加上 if 判断。例如:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
如果我们只想要偶数的平方,不改动 range()的情况下,可以加上 if 来筛选:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
有了 if 条件,只有 if 判断为 True 的时候,才把循环的当前元素添加到列表中。
13.4,多层表达式
for循环可以嵌套,因此,在列表生成式中,也可以用多层 for 循环来生成列表。
对于字符串 'ABC' 和 '123',可以使用两层循环,生成全排列:
>>> [m + n for m in 'ABC' for n in '123']
['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1', 'C2', 'C3']
翻译成循环代码就像下面这样:
L = []
for m in 'ABC':
for n in '123':
L.append(m + n)
以上是python的入门部分,在这一部分中学习到的内容: